SMICA  1.0
Public Member Functions | List of all members
smica.instrument.LogLinearBeam Class Reference
Inheritance diagram for smica.instrument.LogLinearBeam:
smica.instrument.Instrument

Public Member Functions

def transfert_function
 
def get_thetascore
 
def get_thetaroot
 
def get_thetafim
 
def apply_beam
 
- Public Member Functions inherited from smica.instrument.Instrument
def __init__
 
def get_dim
 
def get_theta
 
def set_theta
 
def pre_alphascore
 
def transfert_function
 
def apply_beam
 

Additional Inherited Members

- Public Attributes inherited from smica.instrument.Instrument
 ndet
 
 nvec
 
 nbin
 
 ndim
 
 vectors
 is this actually used ?
 
 alpha
 
 binning
 

Detailed Description

Implementation of log-linear observation model

The log-linear model writes

.. math:: b_nl = \exp(\sum_k \alpha_nk \Delta_nkl)

where n is the detector index, l the bin index and k the basis
index. The matrix observation model B is diagonal with b_nl as
element.

Member Function Documentation

def smica.instrument.LogLinearBeam.apply_beam (   self,
  cov_source,
  bin = None 
)
Return the application of the transfert function to the
covariance sources ie B^dag S B for all bin
def smica.instrument.LogLinearBeam.get_thetafim (   self,
  iRr,
  nmode,
  signal_comp,
  brute_force = False 
)
Return Fisher Information Matrix.

Parameters
----------
iRr : array-like
  shape of (ndet, ndet, nbin). iRr is the square root of the
  inverse of the sum of the 'sky component' covariance

signal_components : array-like, shape (ndet, ndet, nbin)
  The sum of signal components

nmode : ndarray of int
  The number of modes for each bin of shape (1, nbin).

Returns
----------
array-like, shape (N, N), where N is the number of free parameters.
def smica.instrument.LogLinearBeam.get_thetaroot (   self,
  iRr,
  signal_component,
  bin = 0 
)
Return root contribution to the Fisher Information Matrix
for a given bin.

Parameters
----------
iRr : array-like, shape (ndet, ndet).
iRr is the square root of the inverse of the covariance of the
model, which is constant for all components at bin bin

signal_components : array-like, shape (ndet, ndet)
  The sum of signal component at bin bin. Beam must not be applied.

bin : int, bin number

Returns
----------
  array-like, shape (ndet * ndet, ndim) where ndim is the number
of parameters in the order [vec1-det1 vec1-det2 ... vec2-det1
...]. out[0, :] should match beam.get_theta(). A reshape of
out[0, :].reshape((nvec, ndet)) should match the output of
beam.theta.
def smica.instrument.LogLinearBeam.get_thetascore (   self,
  D,
  observed_cov 
)
Return first derivative as a column vector.

Parameters
----------
D : ndarray
  A precomputed ndarray of shape (ndet, ndet, nbin). SMICA wizard
  know what is it.

observed_covariance : ndarray
  A ndarray of shape (ndet, ndet, nbin) corresponding to the
  sum of observed component covariance.
def smica.instrument.LogLinearBeam.transfert_function (   self,
  bin = None 
)
Return transfert function as a (ndet, ndet, nbin)
array. bin can be specified.

The documentation for this class was generated from the following file: