32                                                                                                               {
   33
   34
   35
   36    int i1;
   37    double estimate = 0., y1, integral_, coarse;
   40 
   41    *integral = 0.;
   42    *evaluations = 0;
   44 
   47 
   49        if( ( status = integrandFunction( x1 + ( x2 - x1 ) * 
initialPoints[i1], &y1, argList ) ) != 
nfu_Okay ) 
return( status );
 
   50        estimate += y1;
   51    }
   52    if( ( status = quadratureFunction( integrandFunction, argList, x1, x2, &integral_ ) ) != 
nfu_Okay ) 
return( status );
 
   54    if( estimate == 0. ) estimate = x2 - x1;
   56 
   57    if( ( status = quadratureFunction( integrandFunction, argList, x1, x2, &coarse ) ) != 
nfu_Okay ) 
return( status );
 
   59 
   60    for( i1 = 0; i1 < 2; i1++ ) {       
   61        if( integral_ == 0. ) break;
   62        y1 = integral_ / estimate;
   63        if( ( y1 > 0.1 ) && ( y1 < 10. ) ) break;
   64 
   65        estimate = integral_;
   67        *evaluations += adaptiveQuadrature_info.
evaluations;
 
   70    }
   71 
   72    *evaluations += adaptiveQuadrature_info.
evaluations;
 
   73    if( adaptiveQuadrature_info.
status == 
nfu_Okay ) *integral = integral_;
 
   74    return( adaptiveQuadrature_info.
status );
 
   75}
static double initialPoints[]
static double nf_GnG_adaptiveQuadrature2(nf_GnG_adaptiveQuadrature_info *adaptiveQuadrature_info, double currentIntrgral, double x1, double x2, int depth)
static int numberOfInitialPoints
#define nf_GnG_adaptiveQuadrature_MaxMaxDepth
enum nfu_status_e nfu_status