Geant4-11
G4TwistTubsHypeSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TwistTubsHypeSide implementation
27//
28// 01-Aug-2002 - Kotoyo Hoshina (hoshina@hepburn.s.chiba-u.ac.jp), created.
29// 13-Nov-2003 - O.Link (Oliver.Link@cern.ch), Integration in Geant4
30// from original version in Jupiter-2.5.02 application.
31// --------------------------------------------------------------------
32
36
37//=====================================================================
38//* constructors ------------------------------------------------------
39
41 const G4RotationMatrix& rot,
42 const G4ThreeVector& tlate,
43 const G4int handedness,
44 const G4double kappa,
45 const G4double tanstereo,
46 const G4double r0,
47 const EAxis axis0,
48 const EAxis axis1,
49 G4double axis0min,
50 G4double axis1min,
51 G4double axis0max,
52 G4double axis1max )
53 : G4VTwistSurface(name, rot, tlate, handedness, axis0, axis1,
54 axis0min, axis1min, axis0max, axis1max),
55 fKappa(kappa), fTanStereo(tanstereo),
56 fTan2Stereo(tanstereo*tanstereo), fR0(r0), fR02(r0*r0), fDPhi(twopi)
57{
58 if ( (axis0 == kZAxis) && (axis1 == kPhi) )
59 {
60 G4Exception("G4TwistTubsHypeSide::G4TwistTubsHypeSide()",
61 "GeomSolids0002", FatalErrorInArgument,
62 "Should swap axis0 and axis1!");
63 }
66 fIsValidNorm = false;
67 SetCorners();
69}
70
72 G4double EndInnerRadius[2],
73 G4double EndOuterRadius[2],
74 G4double DPhi,
75 G4double EndPhi[2],
76 G4double EndZ[2],
77 G4double InnerRadius,
78 G4double OuterRadius,
79 G4double Kappa,
80 G4double TanInnerStereo,
81 G4double TanOuterStereo,
82 G4int handedness)
84{
85
86 fHandedness = handedness; // +z = +ve, -z = -ve
87 fAxis[0] = kPhi;
88 fAxis[1] = kZAxis;
89 fAxisMin[0] = kInfinity; // we cannot fix boundary min of Phi,
90 fAxisMax[0] = kInfinity; // because it depends on z.
91 fAxisMin[1] = EndZ[0];
92 fAxisMax[1] = EndZ[1];
93 fKappa = Kappa;
94 fDPhi = DPhi ;
95
96 if (handedness < 0) // inner hyperbolic surface
97 {
98 fTanStereo = TanInnerStereo;
99 fR0 = InnerRadius;
100 }
101 else // outer hyperbolic surface
102 {
103 fTanStereo = TanOuterStereo;
104 fR0 = OuterRadius;
105 }
107 fR02 = fR0 * fR0;
108
109 fTrans.set(0, 0, 0);
110 fIsValidNorm = false;
111
114
115 SetCorners(EndInnerRadius, EndOuterRadius, DPhi, EndPhi, EndZ) ;
116
118}
119
120//=====================================================================
121//* Fake default constructor ------------------------------------------
122
124 : G4VTwistSurface(a), fKappa(0.), fTanStereo(0.), fTan2Stereo(0.),
125 fR0(0.), fR02(0.), fDPhi(0.)
126{
127}
128
129//=====================================================================
130//* destructor --------------------------------------------------------
131
133{
134}
135
136//=====================================================================
137//* GetNormal ---------------------------------------------------------
138
140 G4bool isGlobal)
141{
142 // GetNormal returns a normal vector at a surface (or very close
143 // to surface) point at tmpxx.
144 // If isGlobal=true, it returns the normal in global coordinate.
145
146 G4ThreeVector xx;
147 if (isGlobal)
148 {
149 xx = ComputeLocalPoint(tmpxx);
150 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance)
151 {
153 }
154 }
155 else
156 {
157 xx = tmpxx;
158 if (xx == fCurrentNormal.p)
159 {
160 return fCurrentNormal.normal;
161 }
162 }
163
164 fCurrentNormal.p = xx;
165
166 G4ThreeVector normal( xx.x(), xx.y(), -xx.z() * fTan2Stereo);
168 normal = normal.unit();
169
170 if (isGlobal)
171 {
173 }
174 else
175 {
177 }
178 return fCurrentNormal.normal;
179}
180
181//=====================================================================
182//* Inside() ----------------------------------------------------------
183
185{
186 // Inside returns
187 const G4double halftol
189
190 if (fInside.gp == gp)
191 {
192 return fInside.inside;
193 }
194 fInside.gp = gp;
195
197
198
199 if (p.mag() < DBL_MIN)
200 {
202 return fInside.inside;
203 }
204
205 G4double rhohype = GetRhoAtPZ(p);
206 G4double distanceToOut = fHandedness * (rhohype - p.getRho());
207 // +ve : inside
208
209 if (distanceToOut < -halftol)
210 {
212 }
213 else
214 {
215 G4int areacode = GetAreaCode(p);
216 if (IsOutside(areacode))
217 {
219 }
220 else if (IsBoundary(areacode))
221 {
223 }
224 else if (IsInside(areacode))
225 {
226 if (distanceToOut <= halftol)
227 {
229 }
230 else
231 {
233 }
234 }
235 else
236 {
237 G4cout << "WARNING - G4TwistTubsHypeSide::Inside()" << G4endl
238 << " Invalid option !" << G4endl
239 << " name, areacode, distanceToOut = "
240 << GetName() << ", " << std::hex << areacode
241 << std::dec << ", " << distanceToOut << G4endl;
242 }
243 }
244
245 return fInside.inside;
246}
247
248//=====================================================================
249//* DistanceToSurface -------------------------------------------------
250
252 const G4ThreeVector& gv,
253 G4ThreeVector gxx[],
254 G4double distance[],
255 G4int areacode[],
256 G4bool isvalid[],
257 EValidate validate)
258{
259 // Decide if and where a line intersects with a hyperbolic
260 // surface (of infinite extent)
261 //
262 // Arguments:
263 // p - (in) Point on trajectory
264 // v - (in) Vector along trajectory
265 // r2 - (in) Square of radius at z = 0
266 // tan2phi - (in) std::tan(stereo)**2
267 // s - (out) Up to two points of intersection, where the
268 // intersection point is p + s*v, and if there are
269 // two intersections, s[0] < s[1]. May be negative.
270 // Returns:
271 // The number of intersections. If 0, the trajectory misses.
272 //
273 //
274 // Equation of a line:
275 //
276 // x = x0 + s*tx y = y0 + s*ty z = z0 + s*tz
277 //
278 // Equation of a hyperbolic surface:
279 //
280 // x**2 + y**2 = r**2 + (z*tanPhi)**2
281 //
282 // Solution is quadratic:
283 //
284 // a*s**2 + b*s + c = 0
285 //
286 // where:
287 //
288 // a = tx**2 + ty**2 - (tz*tanPhi)**2
289 //
290 // b = 2*( x0*tx + y0*ty - z0*tz*tanPhi**2 )
291 //
292 // c = x0**2 + y0**2 - r**2 - (z0*tanPhi)**2
293 //
294
295 fCurStatWithV.ResetfDone(validate, &gp, &gv);
296
297 if (fCurStatWithV.IsDone())
298 {
299 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
300 {
301 gxx[i] = fCurStatWithV.GetXX(i);
302 distance[i] = fCurStatWithV.GetDistance(i);
303 areacode[i] = fCurStatWithV.GetAreacode(i);
304 isvalid[i] = fCurStatWithV.IsValid(i);
305 }
306 return fCurStatWithV.GetNXX();
307 }
308 else // initialize
309 {
310 for (auto i=0; i<2; ++i)
311 {
312 distance[i] = kInfinity;
313 areacode[i] = sOutside;
314 isvalid[i] = false;
316 }
317 }
318
321 G4ThreeVector xx[2];
322
323 //
324 // special case! p is on origin.
325 //
326
327 if (p.mag() == 0)
328 {
329 // p is origin.
330 // unique solution of 2-dimension question in r-z plane
331 // Equations:
332 // r^2 = fR02 + z^2*fTan2Stere0
333 // r = beta*z
334 // where
335 // beta = vrho / vz
336 // Solution (z value of intersection point):
337 // xxz = +- std::sqrt (fR02 / (beta^2 - fTan2Stereo))
338 //
339
340 G4double vz = v.z();
341 G4double absvz = std::fabs(vz);
342 G4double vrho = v.getRho();
343 G4double vslope = vrho/vz;
344 G4double vslope2 = vslope * vslope;
345 if (vrho == 0 || (vrho/absvz) <= (absvz*std::fabs(fTanStereo)/absvz))
346 {
347 // vz/vrho is bigger than slope of asymptonic line
348 distance[0] = kInfinity;
349 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
350 isvalid[0], 0, validate, &gp, &gv);
351 return 0;
352 }
353
354 if (vz)
355 {
356 G4double xxz = std::sqrt(fR02 / (vslope2 - fTan2Stereo))
357 * (vz / std::fabs(vz)) ;
358 G4double t = xxz / vz;
359 xx[0].set(t*v.x(), t*v.y(), xxz);
360 }
361 else
362 {
363 // p.z = 0 && v.z =0
364 xx[0].set(v.x()*fR0, v.y()*fR0, 0); // v is a unit vector.
365 }
366 distance[0] = xx[0].mag();
367 gxx[0] = ComputeGlobalPoint(xx[0]);
368
369 if (validate == kValidateWithTol)
370 {
371 areacode[0] = GetAreaCode(xx[0]);
372 if (!IsOutside(areacode[0]))
373 {
374 if (distance[0] >= 0) isvalid[0] = true;
375 }
376 }
377 else if (validate == kValidateWithoutTol)
378 {
379 areacode[0] = GetAreaCode(xx[0], false);
380 if (IsInside(areacode[0]))
381 {
382 if (distance[0] >= 0) isvalid[0] = true;
383 }
384 }
385 else // kDontValidate
386 {
387 areacode[0] = sInside;
388 if (distance[0] >= 0) isvalid[0] = true;
389 }
390
391 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
392 isvalid[0], 1, validate, &gp, &gv);
393 return 1;
394 }
395
396 //
397 // special case end.
398 //
399
400 G4double a = v.x()*v.x() + v.y()*v.y() - v.z()*v.z()*fTan2Stereo;
401 G4double b = 2.0
402 * ( p.x() * v.x() + p.y() * v.y() - p.z() * v.z() * fTan2Stereo );
403 G4double c = p.x()*p.x() + p.y()*p.y() - fR02 - p.z()*p.z()*fTan2Stereo;
404 G4double D = b*b - 4*a*c; //discriminant
405 G4int vout = 0;
406
407 if (std::fabs(a) < DBL_MIN)
408 {
409 if (std::fabs(b) > DBL_MIN) // single solution
410 {
411 distance[0] = -c/b;
412 xx[0] = p + distance[0]*v;
413 gxx[0] = ComputeGlobalPoint(xx[0]);
414
415 if (validate == kValidateWithTol)
416 {
417 areacode[0] = GetAreaCode(xx[0]);
418 if (!IsOutside(areacode[0]))
419 {
420 if (distance[0] >= 0) isvalid[0] = true;
421 }
422 }
423 else if (validate == kValidateWithoutTol)
424 {
425 areacode[0] = GetAreaCode(xx[0], false);
426 if (IsInside(areacode[0]))
427 {
428 if (distance[0] >= 0) isvalid[0] = true;
429 }
430 }
431 else // kDontValidate
432 {
433 areacode[0] = sInside;
434 if (distance[0] >= 0) isvalid[0] = true;
435 }
436
437 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
438 isvalid[0], 1, validate, &gp, &gv);
439 vout = 1;
440 }
441 else
442 {
443 // if a=b=0 and c != 0, p is origin and v is parallel to asymptotic line
444 // if a=b=c=0, p is on surface and v is paralell to stereo wire.
445 // return distance = infinity
446
447 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
448 isvalid[0], 0, validate, &gp, &gv);
449 vout = 0;
450 }
451 }
452 else if (D > DBL_MIN) // double solutions
453 {
454 D = std::sqrt(D);
455 G4double factor = 0.5/a;
456 G4double tmpdist[2] = {kInfinity, kInfinity};
457 G4ThreeVector tmpxx[2] ;
458 G4int tmpareacode[2] = {sOutside, sOutside};
459 G4bool tmpisvalid[2] = {false, false};
460
461 for (auto i=0; i<2; ++i)
462 {
463 tmpdist[i] = factor*(-b - D);
464 D = -D;
465 tmpxx[i] = p + tmpdist[i]*v;
466
467 if (validate == kValidateWithTol)
468 {
469 tmpareacode[i] = GetAreaCode(tmpxx[i]);
470 if (!IsOutside(tmpareacode[i]))
471 {
472 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
473 continue;
474 }
475 }
476 else if (validate == kValidateWithoutTol)
477 {
478 tmpareacode[i] = GetAreaCode(tmpxx[i], false);
479 if (IsInside(tmpareacode[i]))
480 {
481 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
482 continue;
483 }
484 }
485 else // kDontValidate
486 {
487 tmpareacode[i] = sInside;
488 if (tmpdist[i] >= 0) tmpisvalid[i] = true;
489 continue;
490 }
491 }
492
493 if (tmpdist[0] <= tmpdist[1])
494 {
495 distance[0] = tmpdist[0];
496 distance[1] = tmpdist[1];
497 xx[0] = tmpxx[0];
498 xx[1] = tmpxx[1];
499 gxx[0] = ComputeGlobalPoint(tmpxx[0]);
500 gxx[1] = ComputeGlobalPoint(tmpxx[1]);
501 areacode[0] = tmpareacode[0];
502 areacode[1] = tmpareacode[1];
503 isvalid[0] = tmpisvalid[0];
504 isvalid[1] = tmpisvalid[1];
505 }
506 else
507 {
508 distance[0] = tmpdist[1];
509 distance[1] = tmpdist[0];
510 xx[0] = tmpxx[1];
511 xx[1] = tmpxx[0];
512 gxx[0] = ComputeGlobalPoint(tmpxx[1]);
513 gxx[1] = ComputeGlobalPoint(tmpxx[0]);
514 areacode[0] = tmpareacode[1];
515 areacode[1] = tmpareacode[0];
516 isvalid[0] = tmpisvalid[1];
517 isvalid[1] = tmpisvalid[0];
518 }
519
520 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
521 isvalid[0], 2, validate, &gp, &gv);
522 fCurStatWithV.SetCurrentStatus(1, gxx[1], distance[1], areacode[1],
523 isvalid[1], 2, validate, &gp, &gv);
524 vout = 2;
525 }
526 else
527 {
528 // if D<0, no solution
529 // if D=0, just grazing the surfaces, return kInfinity
530
531 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
532 isvalid[0], 0, validate, &gp, &gv);
533 vout = 0;
534 }
535 return vout;
536}
537
538//=====================================================================
539//* DistanceToSurface -------------------------------------------------
540
542 G4ThreeVector gxx[],
543 G4double distance[],
544 G4int areacode[])
545{
546 // Find the approximate distance of a point of a hyperbolic surface.
547 // The distance must be an underestimate.
548 // It will also be nice (although not necessary) that the estimate is
549 // always finite no matter how close the point is.
550 //
551 // We arranged G4Hype::ApproxDistOutside and G4Hype::ApproxDistInside
552 // for this function. See these discriptions.
553
554 const G4double halftol
556
558
559 if (fCurStat.IsDone())
560 {
561 for (G4int i=0; i<fCurStat.GetNXX(); ++i)
562 {
563 gxx[i] = fCurStat.GetXX(i);
564 distance[i] = fCurStat.GetDistance(i);
565 areacode[i] = fCurStat.GetAreacode(i);
566 }
567 return fCurStat.GetNXX();
568 }
569 else // initialize
570 {
571 for (auto i=0; i<2; ++i)
572 {
573 distance[i] = kInfinity;
574 areacode[i] = sOutside;
576 }
577 }
578
579
581 G4ThreeVector xx;
582
583 //
584 // special case!
585 // If p is on surface, return distance = 0 immediatery .
586 //
587 G4ThreeVector lastgxx[2];
588 for (auto i=0; i<2; ++i)
589 {
590 lastgxx[i] = fCurStatWithV.GetXX(i);
591 }
592
593 if ((gp - lastgxx[0]).mag() < halftol || (gp - lastgxx[1]).mag() < halftol)
594 {
595 // last winner, or last poststep point is on the surface.
596 xx = p;
597 gxx[0] = gp;
598 distance[0] = 0;
599
600 G4bool isvalid = true;
601 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
602 isvalid, 1, kDontValidate, &gp);
603
604 return 1;
605 }
606 //
607 // special case end
608 //
609
610 G4double prho = p.getRho();
611 G4double pz = std::fabs(p.z()); // use symmetry
612 G4double r1 = std::sqrt(fR02 + pz * pz * fTan2Stereo);
613
614 G4ThreeVector pabsz(p.x(), p.y(), pz);
615
616 if (prho > r1 + halftol) // p is outside of Hyperbolic surface
617 {
618 // First point xx1
619 G4double t = r1 / prho;
620 G4ThreeVector xx1(t * pabsz.x(), t * pabsz.y() , pz);
621
622 // Second point xx2
623 G4double z2 = (prho * fTanStereo + pz) / (1 + fTan2Stereo);
624 G4double r2 = std::sqrt(fR02 + z2 * z2 * fTan2Stereo);
625 t = r2 / prho;
626 G4ThreeVector xx2(t * pabsz.x(), t * pabsz.y() , z2);
627
628 G4double len = (xx2 - xx1).mag();
629 if (len < DBL_MIN)
630 {
631 // xx2 = xx1?? I guess we
632 // must have really bracketed the normal
633 distance[0] = (pabsz - xx1).mag();
634 xx = xx1;
635 }
636 else
637 {
638 distance[0] = DistanceToLine(pabsz, xx1, (xx2 - xx1) , xx);
639 }
640
641 }
642 else if (prho < r1 - halftol) // p is inside of Hyperbolic surface.
643 {
644 // First point xx1
645 G4double t;
646 G4ThreeVector xx1;
647 if (prho < DBL_MIN)
648 {
649 xx1.set(r1, 0. , pz);
650 }
651 else
652 {
653 t = r1 / prho;
654 xx1.set(t * pabsz.x(), t * pabsz.y() , pz);
655 }
656
657 // dr, dz is tangential vector of Hyparbolic surface at xx1
658 // dr = r, dz = z*tan2stereo
659 G4double dr = pz * fTan2Stereo;
660 G4double dz = r1;
661 G4double tanbeta = dr / dz;
662 G4double pztanbeta = pz * tanbeta;
663
664 // Second point xx2
665 // xx2 is intersection between x-axis and tangential vector
666 G4double r2 = r1 - pztanbeta;
667 G4ThreeVector xx2;
668 if (prho < DBL_MIN)
669 {
670 xx2.set(r2, 0. , 0.);
671 }
672 else
673 {
674 t = r2 / prho;
675 xx2.set(t * pabsz.x(), t * pabsz.y() , 0.);
676 }
677
678 G4ThreeVector d = xx2 - xx1;
679 distance[0] = DistanceToLine(pabsz, xx1, d, xx);
680
681 }
682 else // p is on Hyperbolic surface.
683 {
684 distance[0] = 0;
685 xx.set(p.x(), p.y(), pz);
686 }
687
688 if (p.z() < 0)
689 {
690 G4ThreeVector tmpxx(xx.x(), xx.y(), -xx.z());
691 xx = tmpxx;
692 }
693
694 gxx[0] = ComputeGlobalPoint(xx);
695 areacode[0] = sInside;
696 G4bool isvalid = true;
697 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
698 isvalid, 1, kDontValidate, &gp);
699 return 1;
700}
701
702//=====================================================================
703//* GetAreaCode -------------------------------------------------------
704
706 G4bool withTol)
707{
708 const G4double ctol = 0.5 * kCarTolerance;
709 G4int areacode = sInside;
710
711 if ((fAxis[0] == kPhi && fAxis[1] == kZAxis))
712 {
713 G4int zaxis = 1;
714
715 if (withTol)
716 {
717 G4bool isoutside = false;
718 G4int phiareacode = GetAreaCodeInPhi(xx);
719 G4bool isoutsideinphi = IsOutside(phiareacode);
720
721 // test boundary of phiaxis
722
723 if ((phiareacode & sAxisMin) == sAxisMin)
724 {
725 areacode |= (sAxis0 & (sAxisPhi | sAxisMin)) | sBoundary;
726 if (isoutsideinphi) isoutside = true;
727 }
728 else if ((phiareacode & sAxisMax) == sAxisMax)
729 {
730 areacode |= (sAxis0 & (sAxisPhi | sAxisMax)) | sBoundary;
731 if (isoutsideinphi) isoutside = true;
732 }
733
734 // test boundary of zaxis
735
736 if (xx.z() < fAxisMin[zaxis] + ctol)
737 {
738 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
739 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
740 else areacode |= sBoundary;
741
742 if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true;
743
744 }
745 else if (xx.z() > fAxisMax[zaxis] - ctol)
746 {
747 areacode |= (sAxis1 & (sAxisZ | sAxisMax));
748 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
749 else areacode |= sBoundary;
750
751 if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true;
752 }
753
754 // if isoutside = true, clear sInside bit.
755 // if not on boundary, add boundary information.
756
757 if (isoutside)
758 {
759 G4int tmpareacode = areacode & (~sInside);
760 areacode = tmpareacode;
761 }
762 else if ((areacode & sBoundary) != sBoundary)
763 {
764 areacode |= (sAxis0 & sAxisPhi) | (sAxis1 & sAxisZ);
765 }
766
767 return areacode;
768 }
769 else
770 {
771 G4int phiareacode = GetAreaCodeInPhi(xx, false);
772
773 // test boundary of z-axis
774
775 if (xx.z() < fAxisMin[zaxis])
776 {
777 areacode |= (sAxis1 & (sAxisZ | sAxisMin)) | sBoundary;
778
779 }
780 else if (xx.z() > fAxisMax[zaxis])
781 {
782 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) | sBoundary;
783 }
784
785 // boundary of phi-axis
786
787 if (phiareacode == sAxisMin)
788 {
789 areacode |= (sAxis0 & (sAxisPhi | sAxisMin));
790 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
791 else areacode |= sBoundary;
792
793 }
794 else if (phiareacode == sAxisMax)
795 {
796 areacode |= (sAxis0 & (sAxisPhi | sAxisMax));
797 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
798 else areacode |= sBoundary;
799 }
800
801 // if not on boundary, add boundary information.
802
803 if ((areacode & sBoundary) != sBoundary)
804 {
805 areacode |= (sAxis0 & sAxisPhi) | (sAxis1 & sAxisZ);
806 }
807 return areacode;
808 }
809 }
810 else
811 {
812 std::ostringstream message;
813 message << "Feature NOT implemented !" << G4endl
814 << " fAxis[0] = " << fAxis[0] << G4endl
815 << " fAxis[1] = " << fAxis[1];
816 G4Exception("G4TwistTubsHypeSide::GetAreaCode()",
817 "GeomSolids0001", FatalException, message);
818 }
819 return areacode;
820}
821
822//=====================================================================
823//* GetAreaCodeInPhi --------------------------------------------------
824
826 G4bool withTol)
827{
828
829 G4ThreeVector lowerlimit; // lower phi-boundary limit at z = xx.z()
830 G4ThreeVector upperlimit; // upper phi-boundary limit at z = xx.z()
831 lowerlimit = GetBoundaryAtPZ(sAxis0 & sAxisMin, xx);
832 upperlimit = GetBoundaryAtPZ(sAxis0 & sAxisMax, xx);
833
834 G4int areacode = sInside;
835 G4bool isoutside = false;
836
837 if (withTol)
838 {
839 if (AmIOnLeftSide(xx, lowerlimit) >= 0) // xx is on lowerlimit
840 {
841 areacode |= (sAxisMin | sBoundary);
842 if (AmIOnLeftSide(xx, lowerlimit) > 0) isoutside = true;
843
844 }
845 else if (AmIOnLeftSide(xx, upperlimit) <= 0) // xx is on upperlimit
846 {
847 areacode |= (sAxisMax | sBoundary);
848 if (AmIOnLeftSide(xx, upperlimit) < 0) isoutside = true;
849 }
850
851 // if isoutside = true, clear inside bit.
852
853 if (isoutside)
854 {
855 G4int tmpareacode = areacode & (~sInside);
856 areacode = tmpareacode;
857 }
858 }
859 else
860 {
861 if (AmIOnLeftSide(xx, lowerlimit, false) >= 0)
862 {
863 areacode |= (sAxisMin | sBoundary);
864 }
865 else if (AmIOnLeftSide(xx, upperlimit, false) <= 0)
866 {
867 areacode |= (sAxisMax | sBoundary);
868 }
869 }
870
871 return areacode;
872}
873
874//=====================================================================
875//* SetCorners(EndInnerRadius, EndOuterRadius,DPhi,EndPhi,EndZ) -------
876
878 G4double EndOuterRadius[2],
879 G4double DPhi,
880 G4double endPhi[2],
881 G4double endZ[2] )
882{
883 // Set Corner points in local coodinate.
884
885 if (fAxis[0] == kPhi && fAxis[1] == kZAxis) {
886
887 G4double endRad[2];
888 G4double halfdphi = 0.5*DPhi;
889
890 for (auto i=0; i<2; ++i) // i=0,1 : -ve z, +ve z
891 {
892 endRad[i] = (fHandedness == 1 ? EndOuterRadius[i] : EndInnerRadius[i]);
893 }
894
895 G4int zmin = 0 ; // at -ve z
896 G4int zmax = 1 ; // at +ve z
897
898 G4double x, y, z;
899
900 // corner of Axis0min and Axis1min
901 x = endRad[zmin]*std::cos(endPhi[zmin] - halfdphi);
902 y = endRad[zmin]*std::sin(endPhi[zmin] - halfdphi);
903 z = endZ[zmin];
904 SetCorner(sC0Min1Min, x, y, z);
905
906 // corner of Axis0max and Axis1min
907 x = endRad[zmin]*std::cos(endPhi[zmin] + halfdphi);
908 y = endRad[zmin]*std::sin(endPhi[zmin] + halfdphi);
909 z = endZ[zmin];
910 SetCorner(sC0Max1Min, x, y, z);
911
912 // corner of Axis0max and Axis1max
913 x = endRad[zmax]*std::cos(endPhi[zmax] + halfdphi);
914 y = endRad[zmax]*std::sin(endPhi[zmax] + halfdphi);
915 z = endZ[zmax];
916 SetCorner(sC0Max1Max, x, y, z);
917
918 // corner of Axis0min and Axis1max
919 x = endRad[zmax]*std::cos(endPhi[zmax] - halfdphi);
920 y = endRad[zmax]*std::sin(endPhi[zmax] - halfdphi);
921 z = endZ[zmax];
922 SetCorner(sC0Min1Max, x, y, z);
923
924 }
925 else
926 {
927 std::ostringstream message;
928 message << "Feature NOT implemented !" << G4endl
929 << " fAxis[0] = " << fAxis[0] << G4endl
930 << " fAxis[1] = " << fAxis[1];
931 G4Exception("G4TwistTubsHypeSide::SetCorners()",
932 "GeomSolids0001", FatalException, message);
933 }
934}
935
936//=====================================================================
937//* SetCorners() ------------------------------------------------------
938
940{
941 G4Exception("G4TwistTubsHypeSide::SetCorners()",
942 "GeomSolids0001", FatalException,
943 "Method NOT implemented !");
944}
945
946//=====================================================================
947//* SetBoundaries() ---------------------------------------------------
948
950{
951 // Set direction-unit vector of phi-boundary-lines in local coodinate.
952 // sAxis0 must be kPhi.
953 // This fanction set lower phi-boundary and upper phi-boundary.
954
955 if (fAxis[0] == kPhi && fAxis[1] == kZAxis)
956 {
957 G4ThreeVector direction;
958 // sAxis0 & sAxisMin
960 direction = direction.unit();
961 SetBoundary(sAxis0 & (sAxisPhi | sAxisMin), direction,
963
964 // sAxis0 & sAxisMax
966 direction = direction.unit();
967 SetBoundary(sAxis0 & (sAxisPhi | sAxisMax), direction,
969
970 // sAxis1 & sAxisMin
972 direction = direction.unit();
973 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction,
975
976 // sAxis1 & sAxisMax
978 direction = direction.unit();
979 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction,
981 }
982 else
983 {
984 std::ostringstream message;
985 message << "Feature NOT implemented !" << G4endl
986 << " fAxis[0] = " << fAxis[0] << G4endl
987 << " fAxis[1] = " << fAxis[1];
988 G4Exception("G4TwistTubsHypeSide::SetBoundaries()",
989 "GeomSolids0001", FatalException, message);
990 }
991}
992
993//=====================================================================
994//* GetFacets() -------------------------------------------------------
995
997 G4int faces[][4], G4int iside )
998{
999 G4double z ; // the two parameters for the surface equation
1000 G4double x,xmin,xmax ;
1001
1002 G4ThreeVector p ; // a point on the surface, given by (z,u)
1003
1004 G4int nnode ;
1005 G4int nface ;
1006
1007 // calculate the (n-1)*(k-1) vertices
1008
1009 for ( G4int i = 0 ; i<n ; ++i )
1010 {
1011 z = fAxisMin[1] + i*(fAxisMax[1]-fAxisMin[1])/(n-1) ;
1012
1013 for ( G4int j = 0 ; j<k ; ++j )
1014 {
1015 nnode = GetNode(i,j,k,n,iside) ;
1016
1017 xmin = GetBoundaryMin(z) ;
1018 xmax = GetBoundaryMax(z) ;
1019
1020 if (fHandedness < 0) // inner hyperbolic surface
1021 {
1022 x = xmin + j*(xmax-xmin)/(k-1) ;
1023 }
1024 else // outer hyperbolic surface
1025 {
1026 x = xmax - j*(xmax-xmin)/(k-1) ;
1027 }
1028
1029 p = SurfacePoint(x,z,true) ; // surface point in global coord.system
1030
1031 xyz[nnode][0] = p.x() ;
1032 xyz[nnode][1] = p.y() ;
1033 xyz[nnode][2] = p.z() ;
1034
1035 if ( i<n-1 && j<k-1 ) // clock wise filling
1036 {
1037 nface = GetFace(i,j,k,n,iside) ;
1038 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,1)
1039 * ( GetNode(i ,j ,k,n,iside)+1) ;
1040 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,1)
1041 * ( GetNode(i+1,j ,k,n,iside)+1) ;
1042 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,1)
1043 * ( GetNode(i+1,j+1,k,n,iside)+1) ;
1044 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,1)
1045 * ( GetNode(i ,j+1,k,n,iside)+1) ;
1046 }
1047 }
1048 }
1049}
G4double D(G4double temp)
@ FatalException
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static constexpr double twopi
Definition: G4SIunits.hh:56
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
double mag() const
double getRho() const
void set(double x, double y, double z)
G4double GetRadialTolerance() const
static G4GeometryTolerance * GetInstance()
virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal=false)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
virtual void SetBoundaries()
virtual G4double GetBoundaryMin(G4double phi)
virtual EInside Inside(const G4ThreeVector &gp)
virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol=true)
virtual G4ThreeVector SurfacePoint(G4double, G4double, G4bool isGlobal=false)
G4TwistTubsHypeSide(const G4String &name, const G4RotationMatrix &rot, const G4ThreeVector &tlate, const G4int handedness, const G4double kappa, const G4double tanstereo, const G4double r0, const EAxis axis0=kPhi, const EAxis axis1=kZAxis, G4double axis0min=-kInfinity, G4double axis1min=-kInfinity, G4double axis0max=kInfinity, G4double axis1max=kInfinity)
virtual void GetFacets(G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside)
virtual G4double GetRhoAtPZ(const G4ThreeVector &p, G4bool isglobal=false) const
virtual G4int GetAreaCodeInPhi(const G4ThreeVector &xx, G4bool withTol=true)
virtual G4double GetBoundaryMax(G4double phi)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
G4bool IsValid(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
virtual G4int AmIOnLeftSide(const G4ThreeVector &me, const G4ThreeVector &vec, G4bool withTol=true)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4double DistanceToLine(const G4ThreeVector &p, const G4ThreeVector &x0, const G4ThreeVector &d, G4ThreeVector &xx)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisPhi
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
virtual G4ThreeVector GetBoundaryAtPZ(G4int areacode, const G4ThreeVector &p) const
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
static const G4int sAxisZ
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
virtual G4String GetName() const
CurrentStatus fCurStatWithV
G4bool IsBoundary(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
EAxis
Definition: geomdefs.hh:54
@ kPhi
Definition: geomdefs.hh:60
@ kZAxis
Definition: geomdefs.hh:57
EInside
Definition: geomdefs.hh:67
@ kInside
Definition: geomdefs.hh:70
@ kOutside
Definition: geomdefs.hh:68
@ kSurface
Definition: geomdefs.hh:69
static const G4double kInfinity
Definition: geomdefs.hh:41
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:79
const char * name(G4int ptype)
#define DBL_MIN
Definition: templates.hh:54