Geant4-11
G4TwistTubsFlatSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TwistTubsFlatSide implementation
27//
28// 01-Aug-2002 - Kotoyo Hoshina (hoshina@hepburn.s.chiba-u.ac.jp), created.
29// 13-Nov-2003 - O.Link (Oliver.Link@cern.ch), Integration in Geant4
30// from original version in Jupiter-2.5.02 application.
31// --------------------------------------------------------------------
32
35
36//=====================================================================
37//* constructors ------------------------------------------------------
38
40 const G4RotationMatrix& rot,
41 const G4ThreeVector& tlate,
42 const G4ThreeVector& n,
43 const EAxis axis0 ,
44 const EAxis axis1 ,
45 G4double axis0min,
46 G4double axis1min,
47 G4double axis0max,
48 G4double axis1max )
49 : G4VTwistSurface(name, rot, tlate, 0, axis0, axis1,
50 axis0min, axis1min, axis0max, axis1max)
51{
52 if (axis0 == kPhi && axis1 == kRho)
53 {
54 G4Exception("G4TwistTubsFlatSide::G4TwistTubsFlatSide()",
55 "GeomSolids0002", FatalErrorInArgument,
56 "Should swap axis0 and axis1!");
57 }
58
60 fCurrentNormal.normal = normal.unit(); // in local coordinate system
61 fIsValidNorm = true;
62
63 SetCorners();
65
66 fSurfaceArea = 1. ; // NOTE: not yet implemented!
67}
68
70 G4double EndInnerRadius[2],
71 G4double EndOuterRadius[2],
72 G4double DPhi,
73 G4double EndPhi[2],
74 G4double EndZ[2],
75 G4int handedness )
77{
78 fHandedness = handedness; // +z = +ve, -z = -ve
79 fAxis[0] = kRho; // in local coordinate system
80 fAxis[1] = kPhi;
81 G4int i = (handedness < 0 ? 0 : 1);
82 fAxisMin[0] = EndInnerRadius[i]; // Inner-hype radius at z=0
83 fAxisMax[0] = EndOuterRadius[i]; // Outer-hype radius at z=0
84 fAxisMin[1] = -0.5*DPhi;
85 fAxisMax[1] = -fAxisMin[1];
86 fCurrentNormal.normal.set(0, 0, (fHandedness < 0 ? -1 : 1));
87 // Unit vector, in local coordinate system
88 fRot.rotateZ(EndPhi[i]);
89 fTrans.set(0, 0, EndZ[i]);
90 fIsValidNorm = true;
91
92 SetCorners();
94
95 fSurfaceArea = 0.5*DPhi * (EndOuterRadius[i]*EndOuterRadius[i]
96 - EndInnerRadius[i]*EndInnerRadius[i] ) ;
97}
98
99//=====================================================================
100//* Fake default constructor ------------------------------------------
101
103 : G4VTwistSurface(a)
104{
105}
106
107//=====================================================================
108//* destructor --------------------------------------------------------
109
111{
112}
113
114//=====================================================================
115//* GetNormal ---------------------------------------------------------
116
118 G4bool isGlobal)
119{
120 if (isGlobal)
121 {
123 }
124 else
125 {
126 return fCurrentNormal.normal;
127 }
128}
129
130//=====================================================================
131//* DistanceToSurface(p, v) -------------------------------------------
132
134 const G4ThreeVector& gv,
135 G4ThreeVector gxx[],
136 G4double distance[],
137 G4int areacode[],
138 G4bool isvalid[],
139 EValidate validate)
140{
141 fCurStatWithV.ResetfDone(validate, &gp, &gv);
142
143 if (fCurStatWithV.IsDone())
144 {
145 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
146 {
147 gxx[i] = fCurStatWithV.GetXX(i);
148 distance[i] = fCurStatWithV.GetDistance(i);
149 areacode[i] = fCurStatWithV.GetAreacode(i);
150 isvalid[i] = fCurStatWithV.IsValid(i);
151 }
152 return fCurStatWithV.GetNXX();
153 }
154 else // initialize
155 {
156 for (G4int i=0; i<2; ++i)
157 {
158 distance[i] = kInfinity;
159 areacode[i] = sOutside;
160 isvalid[i] = false;
162 }
163 }
164
167
168 //
169 // special case!
170 // if p is on surface, distance = 0.
171 //
172
173 if (std::fabs(p.z()) == 0.) // if p is on the plane
174 {
175 distance[0] = 0;
176 G4ThreeVector xx = p;
177 gxx[0] = ComputeGlobalPoint(xx);
178
179 if (validate == kValidateWithTol)
180 {
181 areacode[0] = GetAreaCode(xx);
182 if (!IsOutside(areacode[0]))
183 {
184 isvalid[0] = true;
185 }
186 }
187 else if (validate == kValidateWithoutTol)
188 {
189 areacode[0] = GetAreaCode(xx, false);
190 if (IsInside(areacode[0]))
191 {
192 isvalid[0] = true;
193 }
194 }
195 else // kDontValidate
196 {
197 areacode[0] = sInside;
198 isvalid[0] = true;
199 }
200 return 1;
201 }
202 //
203 // special case end
204 //
205
206 if (v.z() == 0)
207 {
208 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
209 isvalid[0], 0, validate, &gp, &gv);
210 return 0;
211 }
212
213 distance[0] = - (p.z() / v.z());
214
215 G4ThreeVector xx = p + distance[0]*v;
216 gxx[0] = ComputeGlobalPoint(xx);
217
218 if (validate == kValidateWithTol)
219 {
220 areacode[0] = GetAreaCode(xx);
221 if (!IsOutside(areacode[0]))
222 {
223 if (distance[0] >= 0) isvalid[0] = true;
224 }
225 }
226 else if (validate == kValidateWithoutTol)
227 {
228 areacode[0] = GetAreaCode(xx, false);
229 if (IsInside(areacode[0]))
230 {
231 if (distance[0] >= 0) isvalid[0] = true;
232 }
233 }
234 else // kDontValidate
235 {
236 areacode[0] = sInside;
237 if (distance[0] >= 0) isvalid[0] = true;
238 }
239
240 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
241 isvalid[0], 1, validate, &gp, &gv);
242
243#ifdef G4TWISTDEBUG
244 G4cerr << "ERROR - G4TwistTubsFlatSide::DistanceToSurface(p,v)" << G4endl;
245 G4cerr << " Name : " << GetName() << G4endl;
246 G4cerr << " xx : " << xx << G4endl;
247 G4cerr << " gxx[0] : " << gxx[0] << G4endl;
248 G4cerr << " dist[0] : " << distance[0] << G4endl;
249 G4cerr << " areacode[0] : " << areacode[0] << G4endl;
250 G4cerr << " isvalid[0] : " << isvalid[0] << G4endl;
251#endif
252 return 1;
253}
254
255//=====================================================================
256//* DistanceToSurface(p) ----------------------------------------------
257
259 G4ThreeVector gxx[],
260 G4double distance[],
261 G4int areacode[])
262{
263 // Calculate distance to plane in local coordinate,
264 // then return distance and global intersection points.
265 //
266
268
269 if (fCurStat.IsDone())
270 {
271 for (G4int i=0; i<fCurStat.GetNXX(); ++i)
272 {
273 gxx[i] = fCurStat.GetXX(i);
274 distance[i] = fCurStat.GetDistance(i);
275 areacode[i] = fCurStat.GetAreacode(i);
276 }
277 return fCurStat.GetNXX();
278 }
279 else // initialize
280 {
281 for (auto i=0; i<2; ++i)
282 {
283 distance[i] = kInfinity;
284 areacode[i] = sOutside;
286 }
287 }
288
290 G4ThreeVector xx;
291
292 // The plane is placed on origin with making its normal
293 // parallel to z-axis.
294 if (std::fabs(p.z()) <= 0.5 * kCarTolerance) // if p is on plane, return 1
295 {
296 distance[0] = 0;
297 xx = p;
298 }
299 else
300 {
301 distance[0] = std::fabs(p.z());
302 xx.set(p.x(), p.y(), 0);
303 }
304
305 gxx[0] = ComputeGlobalPoint(xx);
306 areacode[0] = sInside;
307 G4bool isvalid = true;
308 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
309 isvalid, 1, kDontValidate, &gp);
310 return 1;
311}
312
313//=====================================================================
314//* GetAreaCode -------------------------------------------------------
315
317 G4bool withTol)
318{
319 const G4double rtol
321
322 G4int areacode = sInside;
323
324 if (fAxis[0] == kRho && fAxis[1] == kPhi)
325 {
326 G4int rhoaxis = 0;
327
328 G4ThreeVector dphimin; // direction of phi-minimum boundary
329 G4ThreeVector dphimax; // direction of phi-maximum boundary
330 dphimin = GetCorner(sC0Max1Min);
331 dphimax = GetCorner(sC0Max1Max);
332
333 if (withTol)
334 {
335 G4bool isoutside = false;
336
337 // test boundary of rho-axis
338
339 if (xx.getRho() <= fAxisMin[rhoaxis] + rtol)
340 {
341 areacode |= (sAxis0 & (sAxisRho|sAxisMin)) | sBoundary; // rho-min
342 if (xx.getRho() < fAxisMin[rhoaxis] - rtol) isoutside = true;
343
344 }
345 else if (xx.getRho() >= fAxisMax[rhoaxis] - rtol)
346 {
347 areacode |= (sAxis0 & (sAxisRho|sAxisMax)) | sBoundary; // rho-max
348 if (xx.getRho() > fAxisMax[rhoaxis] + rtol) isoutside = true;
349 }
350
351 // test boundary of phi-axis
352
353 if (AmIOnLeftSide(xx, dphimin) >= 0) // xx is on dphimin
354 {
355 areacode |= (sAxis1 & (sAxisPhi | sAxisMin));
356 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
357 else areacode |= sBoundary;
358
359 if (AmIOnLeftSide(xx, dphimin) > 0) isoutside = true;
360
361 }
362 else if (AmIOnLeftSide(xx, dphimax) <= 0) // xx is on dphimax
363 {
364 areacode |= (sAxis1 & (sAxisPhi | sAxisMax));
365 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
366 else areacode |= sBoundary;
367
368 if (AmIOnLeftSide(xx, dphimax) < 0) isoutside = true;
369 }
370
371 // if isoutside = true, clear inside bit.
372 // if not on boundary, add axis information.
373
374 if (isoutside)
375 {
376 G4int tmpareacode = areacode & (~sInside);
377 areacode = tmpareacode;
378 }
379 else if ((areacode & sBoundary) != sBoundary)
380 {
381 areacode |= (sAxis0 & sAxisRho) | (sAxis1 & sAxisPhi);
382 }
383
384 }
385 else
386 {
387 // out of boundary of rho-axis
388
389 if (xx.getRho() < fAxisMin[rhoaxis])
390 {
391 areacode |= (sAxis0 & (sAxisRho | sAxisMin)) | sBoundary;
392 }
393 else if (xx.getRho() > fAxisMax[rhoaxis])
394 {
395 areacode |= (sAxis0 & (sAxisRho | sAxisMax)) | sBoundary;
396 }
397
398 // out of boundary of phi-axis
399
400 if (AmIOnLeftSide(xx, dphimin, false) >= 0) // xx is leftside or
401 {
402 areacode |= (sAxis1 & (sAxisPhi | sAxisMin)) ; // boundary of dphimin
403 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner
404 else areacode |= sBoundary;
405
406 }
407 else if (AmIOnLeftSide(xx, dphimax, false) <= 0) // xx is rightside or
408 {
409 areacode |= (sAxis1 & (sAxisPhi | sAxisMax)); // boundary of dphimax
410 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner
411 else areacode |= sBoundary;
412
413 }
414
415 if ((areacode & sBoundary) != sBoundary) {
416 areacode |= (sAxis0 & sAxisRho) | (sAxis1 & sAxisPhi);
417 }
418
419 }
420 return areacode;
421 }
422 else
423 {
424 std::ostringstream message;
425 message << "Feature NOT implemented !" << G4endl
426 << " fAxis[0] = " << fAxis[0] << G4endl
427 << " fAxis[1] = " << fAxis[1];
428 G4Exception("G4TwistTubsFlatSide::GetAreaCode()", "GeomSolids0001",
429 FatalException, message);
430 }
431 return areacode;
432}
433
434//=====================================================================
435//* SetCorners --------------------------------------------------------
436
438{
439 // Set Corner points in local coodinate.
440
441 if (fAxis[0] == kRho && fAxis[1] == kPhi)
442 {
443 G4int rhoaxis = 0; // kRho
444 G4int phiaxis = 1; // kPhi
445
446 G4double x, y, z;
447 // corner of Axis0min and Axis1min
448 x = fAxisMin[rhoaxis]*std::cos(fAxisMin[phiaxis]);
449 y = fAxisMin[rhoaxis]*std::sin(fAxisMin[phiaxis]);
450 z = 0;
451 SetCorner(sC0Min1Min, x, y, z);
452 // corner of Axis0max and Axis1min
453 x = fAxisMax[rhoaxis]*std::cos(fAxisMin[phiaxis]);
454 y = fAxisMax[rhoaxis]*std::sin(fAxisMin[phiaxis]);
455 z = 0;
456 SetCorner(sC0Max1Min, x, y, z);
457 // corner of Axis0max and Axis1max
458 x = fAxisMax[rhoaxis]*std::cos(fAxisMax[phiaxis]);
459 y = fAxisMax[rhoaxis]*std::sin(fAxisMax[phiaxis]);
460 z = 0;
461 SetCorner(sC0Max1Max, x, y, z);
462 // corner of Axis0min and Axis1max
463 x = fAxisMin[rhoaxis]*std::cos(fAxisMax[phiaxis]);
464 y = fAxisMin[rhoaxis]*std::sin(fAxisMax[phiaxis]);
465 z = 0;
466 SetCorner(sC0Min1Max, x, y, z);
467
468 }
469 else
470 {
471 std::ostringstream message;
472 message << "Feature NOT implemented !" << G4endl
473 << " fAxis[0] = " << fAxis[0] << G4endl
474 << " fAxis[1] = " << fAxis[1];
475 G4Exception("G4TwistTubsFlatSide::SetCorners()", "GeomSolids0001",
476 FatalException, message);
477 }
478}
479
480//=====================================================================
481//* SetBoundaries() ---------------------------------------------------
482
484{
485 // Set direction-unit vector of phi-boundary-lines in local coodinate.
486 // Don't call the function twice.
487
488 if (fAxis[0] == kRho && fAxis[1] == kPhi)
489 {
490 G4ThreeVector direction;
491 // sAxis0 & sAxisMin
493 direction = direction.unit();
494 SetBoundary(sAxis0 & (sAxisPhi | sAxisMin), direction,
496
497 // sAxis0 & sAxisMax
499 direction = direction.unit();
500 SetBoundary(sAxis0 & (sAxisPhi | sAxisMax), direction,
502
503 // sAxis1 & sAxisMin
505 direction = direction.unit();
506 SetBoundary(sAxis1 & (sAxisRho | sAxisMin), direction,
508
509 // sAxis1 & sAxisMax
511 direction = direction.unit();
512 SetBoundary(sAxis1 & (sAxisRho | sAxisMax), direction,
514 }
515 else
516 {
517 std::ostringstream message;
518 message << "Feature NOT implemented !" << G4endl
519 << " fAxis[0] = " << fAxis[0] << G4endl
520 << " fAxis[1] = " << fAxis[1];
521 G4Exception("G4TwistTubsFlatSide::SetBoundaries()", "GeomSolids0001",
522 FatalException, message);
523 }
524}
525
526//=====================================================================
527//* GetFacets() -------------------------------------------------------
528
530 G4int faces[][4], G4int iside )
531{
532 G4ThreeVector p ;
533
534 G4double rmin = fAxisMin[0] ;
535 G4double rmax = fAxisMax[0] ;
536 G4double phimin, phimax ;
537
538 G4double r,phi ;
539 G4int nnode,nface ;
540
541 for ( G4int i = 0 ; i<n ; ++i )
542 {
543 r = rmin + i*(rmax-rmin)/(n-1) ;
544
545 phimin = GetBoundaryMin(r) ;
546 phimax = GetBoundaryMax(r) ;
547
548 for ( G4int j = 0 ; j<k ; ++j )
549 {
550 phi = phimin + j*(phimax-phimin)/(k-1) ;
551
552 nnode = GetNode(i,j,k,n,iside) ;
553 p = SurfacePoint(phi,r,true) ; // surface point in global coord.system
554
555 xyz[nnode][0] = p.x() ;
556 xyz[nnode][1] = p.y() ;
557 xyz[nnode][2] = p.z() ;
558
559 if ( i<n-1 && j<k-1 ) // conterclock wise filling
560 {
561 nface = GetFace(i,j,k,n,iside) ;
562
563 if (fHandedness < 0) // lower side
564 {
565 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
566 * ( GetNode(i ,j ,k,n,iside)+1) ;
567 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
568 * ( GetNode(i ,j+1,k,n,iside)+1) ;
569 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
570 * ( GetNode(i+1,j+1,k,n,iside)+1) ;
571 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
572 * ( GetNode(i+1,j ,k,n,iside)+1) ;
573 }
574 else // upper side
575 {
576 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,1)
577 * ( GetNode(i ,j ,k,n,iside)+1) ;
578 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,1)
579 * ( GetNode(i+1,j ,k,n,iside)+1) ;
580 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,1)
581 * ( GetNode(i+1,j+1,k,n,iside)+1) ;
582 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,1)
583 * ( GetNode(i ,j+1,k,n,iside)+1) ;
584 }
585 }
586 }
587 }
588}
@ FatalException
@ FatalErrorInArgument
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
double z() const
Hep3Vector unit() const
double x() const
double y() const
double getRho() const
void set(double x, double y, double z)
HepRotation inverse() const
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:87
G4double GetRadialTolerance() const
static G4GeometryTolerance * GetInstance()
virtual void GetFacets(G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
G4TwistTubsFlatSide(const G4String &name, const G4RotationMatrix &rot, const G4ThreeVector &tlate, const G4ThreeVector &n, const EAxis axis1=kRho, const EAxis axis2=kPhi, G4double axis0min=-kInfinity, G4double axis1min=-kInfinity, G4double axis0max=kInfinity, G4double axis1max=kInfinity)
virtual G4double GetBoundaryMin(G4double phi)
virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol=true)
virtual G4ThreeVector GetNormal(const G4ThreeVector &, G4bool isGlobal=false)
virtual G4double GetBoundaryMax(G4double phi)
virtual void SetBoundaries()
virtual G4ThreeVector SurfacePoint(G4double, G4double, G4bool isGlobal=false)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
G4bool IsValid(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
virtual G4int AmIOnLeftSide(const G4ThreeVector &me, const G4ThreeVector &vec, G4bool withTol=true)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4RotationMatrix fRot
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisPhi
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
static const G4int sAxisRho
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
virtual G4String GetName() const
CurrentStatus fCurStatWithV
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
EAxis
Definition: geomdefs.hh:54
@ kPhi
Definition: geomdefs.hh:60
@ kRho
Definition: geomdefs.hh:58
static const G4double kInfinity
Definition: geomdefs.hh:41
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:79
const char * name(G4int ptype)