Geant4-11
G4TwistTrapParallelSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TwistTrapParallelSide implementation
27//
28// Author: Oliver Link (Oliver.Link@cern.ch)
29// --------------------------------------------------------------------
30
31#include <cmath>
32
36
37//=====================================================================
38//* constructors ------------------------------------------------------
39
41 G4double PhiTwist, // twist angle
42 G4double pDz, // half z lenght
43 G4double pTheta, // direction between end planes
44 G4double pPhi, // by polar and azimutal angles
45 G4double pDy1, // half y length at -pDz
46 G4double pDx1, // half x length at -pDz,-pDy
47 G4double pDx2, // half x length at -pDz,+pDy
48 G4double pDy2, // half y length at +pDz
49 G4double pDx3, // half x length at +pDz,-pDy
50 G4double pDx4, // half x length at +pDz,+pDy
51 G4double pAlph, // tilt angle at +pDz
52 G4double AngleSide // parity
53 )
55{
56
57 fAxis[0] = kXAxis; // in local coordinate system
58 fAxis[1] = kZAxis;
59 fAxisMin[0] = -kInfinity ; // X Axis boundary
60 fAxisMax[0] = kInfinity ; // depends on z !!
61 fAxisMin[1] = -pDz ; // Z Axis boundary
62 fAxisMax[1] = pDz ;
63
64 fDx1 = pDx1 ;
65 fDx2 = pDx2 ;
66 fDx3 = pDx3 ;
67 fDx4 = pDx4 ;
68
69 fDy1 = pDy1 ;
70 fDy2 = pDy2 ;
71
72 fDz = pDz ;
73
74 fAlph = pAlph ;
75 fTAlph = std::tan(fAlph) ;
76
77 fTheta = pTheta ;
78 fPhi = pPhi ;
79
80 // precalculate frequently used parameters
81 //
82 fDx4plus2 = fDx4 + fDx2 ;
83 fDx4minus2 = fDx4 - fDx2 ;
84 fDx3plus1 = fDx3 + fDx1 ;
85 fDx3minus1 = fDx3 - fDx1 ;
86 fDy2plus1 = fDy2 + fDy1 ;
87 fDy2minus1 = fDy2 - fDy1 ;
88
89 fa1md1 = 2*fDx2 - 2*fDx1 ;
90 fa2md2 = 2*fDx4 - 2*fDx3 ;
91
92 fPhiTwist = PhiTwist ; // dphi
93 fAngleSide = AngleSide ; // 0,90,180,270 deg
94
95 fdeltaX = 2*fDz*std::tan(fTheta)*std::cos(fPhi); // dx in surface equation
96 fdeltaY = 2*fDz*std::tan(fTheta)*std::sin(fPhi); // dy in surface equation
97
98 fRot.rotateZ( AngleSide ) ;
99
100 fTrans.set(0, 0, 0); // No Translation
101 fIsValidNorm = false;
102
103 SetCorners() ;
104 SetBoundaries() ;
105}
106
107//=====================================================================
108//* Fake default constructor ------------------------------------------
109
111 : G4VTwistSurface(a), fTheta(0.), fPhi(0.), fDy1(0.), fDx1(0.), fDx2(0.),
112 fDy2(0.), fDx3(0.), fDx4(0.), fDz(0.), fAlph(0.), fTAlph(0.), fPhiTwist(0.),
113 fAngleSide(0.), fdeltaX(0.), fdeltaY(0.), fDx4plus2(0.), fDx4minus2(0.),
114 fDx3plus1(0.), fDx3minus1(0.), fDy2plus1(0.), fDy2minus1(0.), fa1md1(0.),
115 fa2md2(0.)
116{
117}
118
119//=====================================================================
120//* destructor --------------------------------------------------------
121
123{
124}
125
126//=====================================================================
127//* GetNormal ---------------------------------------------------------
128
130 G4bool isGlobal)
131{
132 // GetNormal returns a normal vector at a surface (or very close
133 // to surface) point at tmpxx.
134 // If isGlobal=true, it returns the normal in global coordinate.
135 //
136
137 G4ThreeVector xx;
138 if (isGlobal)
139 {
140 xx = ComputeLocalPoint(tmpxx);
141 if ((xx - fCurrentNormal.p).mag() < 0.5 * kCarTolerance)
142 {
144 }
145 }
146 else
147 {
148 xx = tmpxx;
149 if (xx == fCurrentNormal.p)
150 {
151 return fCurrentNormal.normal;
152 }
153 }
154
155 G4double phi ;
156 G4double u ;
157
158 GetPhiUAtX(xx,phi,u) ; // phi,u for point xx close to surface
159
160 G4ThreeVector normal = NormAng(phi,u) ; // the normal vector at phi,u
161
162#ifdef G4TWISTDEBUG
163 G4cout << "normal vector = " << normal << G4endl ;
164 G4cout << "phi = " << phi << " , u = " << u << G4endl ;
165#endif
166
167 // normal = normal/normal.mag() ;
168
169 if (isGlobal)
170 {
172 }
173 else
174 {
176 }
177 return fCurrentNormal.normal;
178}
179
180//=====================================================================
181//* DistanceToSurface -------------------------------------------------
182
184 const G4ThreeVector& gv,
185 G4ThreeVector gxx[],
186 G4double distance[],
187 G4int areacode[],
188 G4bool isvalid[],
189 EValidate validate)
190{
191 static const G4double pihalf = pi/2 ;
192 const G4double ctol = 0.5 * kCarTolerance;
193
194 G4bool IsParallel = false ;
195 G4bool IsConverged = false ;
196
197 G4int nxx = 0 ; // number of physical solutions
198
199 fCurStatWithV.ResetfDone(validate, &gp, &gv);
200
201 if (fCurStatWithV.IsDone())
202 {
203 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
204 {
205 gxx[i] = fCurStatWithV.GetXX(i);
206 distance[i] = fCurStatWithV.GetDistance(i);
207 areacode[i] = fCurStatWithV.GetAreacode(i);
208 isvalid[i] = fCurStatWithV.IsValid(i);
209 }
210 return fCurStatWithV.GetNXX();
211 }
212 else // initialize
213 {
214 for (G4int i=0; i<G4VSURFACENXX ; ++i)
215 {
216 distance[i] = kInfinity;
217 areacode[i] = sOutside;
218 isvalid[i] = false;
220 }
221 }
222
225
226#ifdef G4TWISTDEBUG
227 G4cout << "Local point p = " << p << G4endl ;
228 G4cout << "Local direction v = " << v << G4endl ;
229#endif
230
231 G4double phi,u ; // parameters
232
233 // temporary variables
234
235 G4double tmpdist = kInfinity ;
236 G4ThreeVector tmpxx;
237 G4int tmpareacode = sOutside ;
238 G4bool tmpisvalid = false ;
239
240 std::vector<Intersection> xbuf ;
241 Intersection xbuftmp ;
242
243 // prepare some variables for the intersection finder
244
245 G4double L = 2*fDz ;
246
247 G4double phixz = fPhiTwist * ( p.x() * v.z() - p.z() * v.x() ) ;
248 G4double phiyz = fPhiTwist * ( p.y() * v.z() - p.z() * v.y() ) ;
249
250 // special case vz = 0
251
252 if ( v.z() == 0. )
253 {
254 if ( std::fabs(p.z()) <= L ) // intersection possible in z
255 {
256 phi = p.z() * fPhiTwist / L ; // phi is determined by the z-position
257
258 u = (2*(fdeltaY*phi*v.x() - fPhiTwist*p.y()*v.x() - fdeltaX*phi*v.y()
259 + fPhiTwist*p.x()*v.y()) + (fDy2plus1*fPhiTwist
260 + 2*fDy2minus1*phi)*(v.x()*std::cos(phi) + v.y()*std::sin(phi)))
261 / (2.* fPhiTwist*(v.y()*std::cos(phi) - v.x()*std::sin(phi)));
262
263 xbuftmp.phi = phi ;
264 xbuftmp.u = u ;
265 xbuftmp.areacode = sOutside ;
266 xbuftmp.distance = kInfinity ;
267 xbuftmp.isvalid = false ;
268
269 xbuf.push_back(xbuftmp) ; // store it to xbuf
270 }
271 else // no intersection possible
272 {
273 distance[0] = kInfinity;
275 isvalid[0] = false ;
276 areacode[0] = sOutside ;
277 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0],
278 areacode[0], isvalid[0],
279 0, validate, &gp, &gv);
280
281 return 0;
282 } // end std::fabs(p.z() <= L
283 } // end v.z() == 0
284 else // general solution for non-zero vz
285 {
286 G4double c[9],srd[8],si[8] ;
287
288 c[8] = -3600*(-2*phiyz + fDy2plus1*fPhiTwist*v.z()) ;
289 c[7] = -7200*(phixz - 2*fDz*v.y() + (fdeltaY + fDy2minus1)*v.z()) ;
290 c[6] = 120*(-52*phiyz - 120*fDz*v.x() + 60*fdeltaX*v.z()
291 + 11*fDy2plus1*fPhiTwist*v.z()) ;
292 c[5] = 240*(16*phixz - 52*fDz*v.y() + 26*fdeltaY*v.z()
293 + 11*fDy2minus1*v.z()) ;
294 c[4] = 12*(127*phiyz + 640*fDz*v.x() - 320*fdeltaX*v.z()
295 + 4*fDy2plus1*fPhiTwist*v.z()) ;
296 c[3] = -404*phixz + 3048*fDz*v.y() - 1524*fdeltaY*v.z()
297 + 96*fDy2minus1*v.z() ;
298 c[2] = -72*phiyz + 404*(-2*fDz*v.x() + fdeltaX*v.z()) ;
299 c[1] = 12*(phixz - 12*fDz*v.y() + 6*fdeltaY*v.z()) ;
300 c[0] = 24*fDz*v.x() - 12*fdeltaX*v.z() ;
301
302
303#ifdef G4TWISTDEBUG
304 G4cout << "coef = " << c[0] << " "
305 << c[1] << " "
306 << c[2] << " "
307 << c[3] << " "
308 << c[4] << " "
309 << c[5] << " "
310 << c[6] << " "
311 << c[7] << " "
312 << c[8] << G4endl ;
313#endif
314
315 G4JTPolynomialSolver trapEq ;
316 G4int num = trapEq.FindRoots(c,8,srd,si);
317
318 for (G4int i = 0 ; i<num ; ++i ) // loop over all mathematical solutions
319 {
320 if ( si[i]==0.0 ) // only real solutions
321 {
322#ifdef G4TWISTDEBUG
323 G4cout << "Solution " << i << " : " << srd[i] << G4endl ;
324#endif
325 phi = std::fmod(srd[i] , pihalf) ;
326 u = (1/std::cos(phi)*(2*phixz + 4*fDz*phi*v.x()
327 - 2*fdeltaX*phi*v.z() + (fDy2plus1*fPhiTwist
328 + 2*fDy2minus1*phi)*v.z()* std::sin(phi)))/(2.*fPhiTwist*v.z()) ;
329
330 xbuftmp.phi = phi ;
331 xbuftmp.u = u ;
332 xbuftmp.areacode = sOutside ;
333 xbuftmp.distance = kInfinity ;
334 xbuftmp.isvalid = false ;
335
336 xbuf.push_back(xbuftmp) ; // store it to xbuf
337
338#ifdef G4TWISTDEBUG
339 G4cout << "solution " << i << " = " << phi << " , " << u << G4endl ;
340#endif
341
342 } // end if real solution
343 } // end loop i
344 } // end general case
345
346 nxx = xbuf.size() ; // save the number of solutions
347
348 G4ThreeVector xxonsurface ; // point on surface
349 G4ThreeVector surfacenormal ; // normal vector
350 G4double deltaX ; // distance between intersection point and point on surface
351 G4double theta ; // angle between track and surfacenormal
352 G4double factor ; // a scaling factor
353 G4int maxint = 30 ; // number of iterations
354
355
356 for ( size_t k = 0 ; k<xbuf.size() ; ++k )
357 {
358#ifdef G4TWISTDEBUG
359 G4cout << "Solution " << k << " : "
360 << "reconstructed phiR = " << xbuf[k].phi
361 << ", uR = " << xbuf[k].u << G4endl ;
362#endif
363
364 phi = xbuf[k].phi ; // get the stored values for phi and u
365 u = xbuf[k].u ;
366
367 IsConverged = false ; // no convergence at the beginning
368
369 for ( G4int i = 1 ; i<maxint ; ++i )
370 {
371 xxonsurface = SurfacePoint(phi,u) ;
372 surfacenormal = NormAng(phi,u) ;
373 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
374 deltaX = ( tmpxx - xxonsurface ).mag() ;
375 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
376 if ( theta < 0.001 )
377 {
378 factor = 50 ;
379 IsParallel = true ;
380 }
381 else
382 {
383 factor = 1 ;
384 }
385
386#ifdef G4TWISTDEBUG
387 G4cout << "Step i = " << i << ", distance = "
388 << tmpdist << ", " << deltaX << G4endl ;
389 G4cout << "X = " << tmpxx << G4endl ;
390#endif
391
392 GetPhiUAtX(tmpxx, phi, u); // new point xx is accepted and phi/u replaced
393
394#ifdef G4TWISTDEBUG
395 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
396#endif
397
398 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
399 } // end iterative loop (i)
400
401 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ;
402
403#ifdef G4TWISTDEBUG
404 G4cout << "refined solution " << phi << " , " << u << G4endl ;
405 G4cout << "distance = " << tmpdist << G4endl ;
406 G4cout << "local X = " << tmpxx << G4endl ;
407#endif
408
409 tmpisvalid = false ; // init
410
411 if ( IsConverged )
412 {
413 if (validate == kValidateWithTol)
414 {
415 tmpareacode = GetAreaCode(tmpxx);
416 if (!IsOutside(tmpareacode))
417 {
418 if (tmpdist >= 0) tmpisvalid = true;
419 }
420 }
421 else if (validate == kValidateWithoutTol)
422 {
423 tmpareacode = GetAreaCode(tmpxx, false);
424 if (IsInside(tmpareacode))
425 {
426 if (tmpdist >= 0) tmpisvalid = true;
427 }
428 }
429 else // kDontValidate
430 {
431 G4Exception("G4TwistTrapParallelSide::DistanceToSurface()",
432 "GeomSolids0001", FatalException,
433 "Feature NOT implemented !");
434 }
435 }
436 else
437 {
438 tmpdist = kInfinity; // no convergence after 10 steps
439 tmpisvalid = false ; // solution is not vaild
440 }
441
442 // store the found values
443 xbuf[k].xx = tmpxx ;
444 xbuf[k].distance = tmpdist ;
445 xbuf[k].areacode = tmpareacode ;
446 xbuf[k].isvalid = tmpisvalid ;
447 } // end loop over physical solutions (variable k)
448
449 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
450
451#ifdef G4TWISTDEBUG
452 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
453 G4cout << G4endl << G4endl ;
454#endif
455
456 // erase identical intersection (within kCarTolerance)
457 xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end());
458
459
460 // add guesses
461
462 G4int nxxtmp = xbuf.size() ;
463
464 if ( nxxtmp<2 || IsParallel )
465 {
466 // positive end
467#ifdef G4TWISTDEBUG
468 G4cout << "add guess at +z/2 .. " << G4endl ;
469#endif
470
471 phi = fPhiTwist/2 ;
472 u = 0 ;
473
474 xbuftmp.phi = phi ;
475 xbuftmp.u = u ;
476 xbuftmp.areacode = sOutside ;
477 xbuftmp.distance = kInfinity ;
478 xbuftmp.isvalid = false ;
479
480 xbuf.push_back(xbuftmp) ; // store it to xbuf
481
482#ifdef G4TWISTDEBUG
483 G4cout << "add guess at -z/2 .. " << G4endl ;
484#endif
485
486 phi = -fPhiTwist/2 ;
487 u = 0 ;
488
489 xbuftmp.phi = phi ;
490 xbuftmp.u = u ;
491 xbuftmp.areacode = sOutside ;
492 xbuftmp.distance = kInfinity ;
493 xbuftmp.isvalid = false ;
494
495 xbuf.push_back(xbuftmp) ; // store it to xbuf
496
497 for ( size_t k = nxxtmp ; k<xbuf.size() ; ++k )
498 {
499#ifdef G4TWISTDEBUG
500 G4cout << "Solution " << k << " : "
501 << "reconstructed phiR = " << xbuf[k].phi
502 << ", uR = " << xbuf[k].u << G4endl ;
503#endif
504
505 phi = xbuf[k].phi ; // get the stored values for phi and u
506 u = xbuf[k].u ;
507
508 IsConverged = false ; // no convergence at the beginning
509
510 for ( G4int i = 1 ; i<maxint ; ++i )
511 {
512 xxonsurface = SurfacePoint(phi,u) ;
513 surfacenormal = NormAng(phi,u) ;
514 tmpdist = DistanceToPlaneWithV(p, v, xxonsurface, surfacenormal, tmpxx);
515 deltaX = ( tmpxx - xxonsurface ).mag() ;
516 theta = std::fabs(std::acos(v*surfacenormal) - pihalf) ;
517 if ( theta < 0.001 )
518 {
519 factor = 50 ;
520 }
521 else
522 {
523 factor = 1 ;
524 }
525
526#ifdef G4TWISTDEBUG
527 G4cout << "Step i = " << i << ", distance = "
528 << tmpdist << ", " << deltaX << G4endl ;
529 G4cout << "X = " << tmpxx << G4endl ;
530#endif
531
532 GetPhiUAtX(tmpxx, phi, u) ; // new point xx accepted and phi/u replaced
533
534#ifdef G4TWISTDEBUG
535 G4cout << "approximated phi = " << phi << ", u = " << u << G4endl ;
536#endif
537
538 if ( deltaX <= factor*ctol ) { IsConverged = true ; break ; }
539 } // end iterative loop (i)
540
541 if ( std::fabs(tmpdist)<ctol ) tmpdist = 0 ;
542
543#ifdef G4TWISTDEBUG
544 G4cout << "refined solution " << phi << " , " << u << G4endl ;
545 G4cout << "distance = " << tmpdist << G4endl ;
546 G4cout << "local X = " << tmpxx << G4endl ;
547#endif
548
549 tmpisvalid = false ; // init
550
551 if ( IsConverged )
552 {
553 if (validate == kValidateWithTol)
554 {
555 tmpareacode = GetAreaCode(tmpxx);
556 if (!IsOutside(tmpareacode))
557 {
558 if (tmpdist >= 0) tmpisvalid = true;
559 }
560 }
561 else if (validate == kValidateWithoutTol)
562 {
563 tmpareacode = GetAreaCode(tmpxx, false);
564 if (IsInside(tmpareacode))
565 {
566 if (tmpdist >= 0) tmpisvalid = true;
567 }
568 }
569 else // kDontValidate
570 {
571 G4Exception("G4TwistedBoxSide::DistanceToSurface()",
572 "GeomSolids0001", FatalException,
573 "Feature NOT implemented !");
574 }
575
576 }
577 else
578 {
579 tmpdist = kInfinity; // no convergence after 10 steps
580 tmpisvalid = false ; // solution is not vaild
581 }
582
583 // store the found values
584 xbuf[k].xx = tmpxx ;
585 xbuf[k].distance = tmpdist ;
586 xbuf[k].areacode = tmpareacode ;
587 xbuf[k].isvalid = tmpisvalid ;
588
589 } // end loop over physical solutions
590 } // end less than 2 solutions
591
592 // sort again
593 std::sort(xbuf.begin() , xbuf.end(), DistanceSort ) ; // sorting
594
595 // erase identical intersection (within kCarTolerance)
596 xbuf.erase(std::unique(xbuf.begin(),xbuf.end(),EqualIntersection),xbuf.end());
597
598#ifdef G4TWISTDEBUG
599 G4cout << G4endl << "list xbuf after sorting : " << G4endl ;
600 G4cout << G4endl << G4endl ;
601#endif
602
603 nxx = xbuf.size() ; // determine number of solutions again.
604
605 for ( size_t i = 0 ; i<xbuf.size() ; ++i )
606 {
607 distance[i] = xbuf[i].distance;
608 gxx[i] = ComputeGlobalPoint(xbuf[i].xx);
609 areacode[i] = xbuf[i].areacode ;
610 isvalid[i] = xbuf[i].isvalid ;
611
612 fCurStatWithV.SetCurrentStatus(i, gxx[i], distance[i], areacode[i],
613 isvalid[i], nxx, validate, &gp, &gv);
614#ifdef G4TWISTDEBUG
615 G4cout << "element Nr. " << i
616 << ", local Intersection = " << xbuf[i].xx
617 << ", distance = " << xbuf[i].distance
618 << ", u = " << xbuf[i].u
619 << ", phi = " << xbuf[i].phi
620 << ", isvalid = " << xbuf[i].isvalid
621 << G4endl ;
622#endif
623 } // end for( i ) loop
624
625#ifdef G4TWISTDEBUG
626 G4cout << "G4TwistTrapParallelSide finished " << G4endl ;
627 G4cout << nxx << " possible physical solutions found" << G4endl ;
628 for ( G4int k= 0 ; k< nxx ; ++k )
629 {
630 G4cout << "global intersection Point found: " << gxx[k] << G4endl ;
631 G4cout << "distance = " << distance[k] << G4endl ;
632 G4cout << "isvalid = " << isvalid[k] << G4endl ;
633 }
634#endif
635
636 return nxx ;
637}
638
639//=====================================================================
640//* DistanceToSurface -------------------------------------------------
641
643 G4ThreeVector gxx[],
644 G4double distance[],
645 G4int areacode[])
646{
647 const G4double ctol = 0.5 * kCarTolerance;
648
650
651 if (fCurStat.IsDone())
652 {
653 for (G4int i=0; i<fCurStat.GetNXX(); ++i)
654 {
655 gxx[i] = fCurStat.GetXX(i);
656 distance[i] = fCurStat.GetDistance(i);
657 areacode[i] = fCurStat.GetAreacode(i);
658 }
659 return fCurStat.GetNXX();
660 }
661 else // initialize
662 {
663 for (G4int i=0; i<G4VSURFACENXX; ++i)
664 {
665 distance[i] = kInfinity;
666 areacode[i] = sOutside;
668 }
669 }
670
672 G4ThreeVector xx; // intersection point
673 G4ThreeVector xxonsurface ; // interpolated intersection point
674
675 // the surfacenormal at that surface point
676 G4double phiR = 0 ; //
677 G4double uR = 0 ;
678
679 G4ThreeVector surfacenormal ;
680 G4double deltaX ;
681
682 G4int maxint = 20 ;
683
684 for ( G4int i = 1 ; i<maxint ; ++i )
685 {
686 xxonsurface = SurfacePoint(phiR,uR) ;
687 surfacenormal = NormAng(phiR,uR) ;
688 distance[0] = DistanceToPlane(p, xxonsurface, surfacenormal, xx); // new XX
689 deltaX = ( xx - xxonsurface ).mag() ;
690
691#ifdef G4TWISTDEBUG
692 G4cout << "i = " << i << ", distance = "
693 << distance[0] << ", " << deltaX << G4endl ;
694 G4cout << "X = " << xx << G4endl ;
695#endif
696
697 // the new point xx is accepted and phi/psi replaced
698 GetPhiUAtX(xx, phiR, uR) ;
699
700 if ( deltaX <= ctol ) { break ; }
701 }
702
703 // check validity of solution ( valid phi,psi )
704
705 G4double halfphi = 0.5*fPhiTwist ;
706 G4double uMax = GetBoundaryMax(phiR) ;
707 G4double uMin = GetBoundaryMin(phiR) ;
708
709 if ( phiR > halfphi ) phiR = halfphi ;
710 if ( phiR < -halfphi ) phiR = -halfphi ;
711 if ( uR > uMax ) uR = uMax ;
712 if ( uR < uMin ) uR = uMin ;
713
714 xxonsurface = SurfacePoint(phiR,uR) ;
715 distance[0] = ( p - xx ).mag() ;
716 if ( distance[0] <= ctol ) { distance[0] = 0 ; }
717
718 // end of validity
719
720#ifdef G4TWISTDEBUG
721 G4cout << "refined solution " << phiR << " , " << uR << " , " << G4endl ;
722 G4cout << "distance = " << distance[0] << G4endl ;
723 G4cout << "X = " << xx << G4endl ;
724#endif
725
726 G4bool isvalid = true;
727 gxx[0] = ComputeGlobalPoint(xx);
728
729#ifdef G4TWISTDEBUG
730 G4cout << "intersection Point found: " << gxx[0] << G4endl ;
731 G4cout << "distance = " << distance[0] << G4endl ;
732#endif
733
734 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
735 isvalid, 1, kDontValidate, &gp);
736 return 1;
737}
738
739//=====================================================================
740//* GetAreaCode -------------------------------------------------------
741
743 G4bool withTol)
744{
745 // We must use the function in local coordinate system.
746 // See the description of DistanceToSurface(p,v).
747
748 const G4double ctol = 0.5 * kCarTolerance;
749
750 G4double phi ;
751 G4double yprime ;
752 GetPhiUAtX(xx, phi,yprime ) ;
753
754 G4double fXAxisMax = GetBoundaryMax(phi) ;
755 G4double fXAxisMin = GetBoundaryMin(phi) ;
756
757#ifdef G4TWISTDEBUG
758 G4cout << "GetAreaCode: phi = " << phi << G4endl ;
759 G4cout << "GetAreaCode: yprime = " << yprime << G4endl ;
760 G4cout << "Intervall is " << fXAxisMin << " to " << fXAxisMax << G4endl ;
761#endif
762
763 G4int areacode = sInside;
764
765 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
766 {
767 G4int zaxis = 1;
768
769 if (withTol)
770 {
771 G4bool isoutside = false;
772
773 // test boundary of xaxis
774
775 if (yprime < fXAxisMin + ctol)
776 {
777 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary;
778 if (yprime <= fXAxisMin - ctol) isoutside = true;
779
780 }
781 else if (yprime > fXAxisMax - ctol)
782 {
783 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
784 if (yprime >= fXAxisMax + ctol) isoutside = true;
785 }
786
787 // test boundary of z-axis
788
789 if (xx.z() < fAxisMin[zaxis] + ctol)
790 {
791 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
792
793 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
794 else areacode |= sBoundary;
795 if (xx.z() <= fAxisMin[zaxis] - ctol) isoutside = true;
796
797 }
798 else if (xx.z() > fAxisMax[zaxis] - ctol)
799 {
800 areacode |= (sAxis1 & (sAxisZ | sAxisMax));
801
802 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
803 else areacode |= sBoundary;
804 if (xx.z() >= fAxisMax[zaxis] + ctol) isoutside = true;
805 }
806
807 // if isoutside = true, clear inside bit.
808 // if not on boundary, add axis information.
809
810 if (isoutside)
811 {
812 G4int tmpareacode = areacode & (~sInside);
813 areacode = tmpareacode;
814 }
815 else if ((areacode & sBoundary) != sBoundary)
816 {
817 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ);
818 }
819
820 }
821 else
822 {
823 // boundary of y-axis
824
825 if (yprime < fXAxisMin )
826 {
827 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary;
828 }
829 else if (yprime > fXAxisMax)
830 {
831 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
832 }
833
834 // boundary of z-axis
835
836 if (xx.z() < fAxisMin[zaxis])
837 {
838 areacode |= (sAxis1 & (sAxisZ | sAxisMin));
839 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
840 else areacode |= sBoundary;
841
842 }
843 else if (xx.z() > fAxisMax[zaxis])
844 {
845 areacode |= (sAxis1 & (sAxisZ | sAxisMax)) ;
846 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
847 else areacode |= sBoundary;
848 }
849
850 if ((areacode & sBoundary) != sBoundary)
851 {
852 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisZ);
853 }
854 }
855 return areacode;
856 }
857 else
858 {
859 G4Exception("G4TwistTrapParallelSide::GetAreaCode()",
860 "GeomSolids0001", FatalException,
861 "Feature NOT implemented !");
862 }
863 return areacode;
864}
865
866//=====================================================================
867//* SetCorners() ------------------------------------------------------
868
870{
871
872 // Set Corner points in local coodinate.
873
874 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
875 {
876 G4double x, y, z;
877
878 // corner of Axis0min and Axis1min
879
880 x = -fdeltaX/2. + (-fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
881 + fDy1*std::sin(fPhiTwist/2.) ;
882 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
883 + (fDx2 - fDy1*fTAlph)*std::sin(fPhiTwist/2.) ;
884 z = -fDz ;
885
886 SetCorner(sC0Min1Min, x, y, z);
887
888 // corner of Axis0max and Axis1min
889
890 x = -fdeltaX/2. + (fDx2 + fDy1*fTAlph)*std::cos(fPhiTwist/2.)
891 + fDy1*std::sin(fPhiTwist/2.) ;
892 y = -fdeltaY/2. + fDy1*std::cos(fPhiTwist/2.)
893 - (fDx2 + fDy1*fTAlph)*std::sin(fPhiTwist/2.) ;
894 z = -fDz;
895
896 SetCorner(sC0Max1Min, x, y, z);
897
898 // corner of Axis0max and Axis1max
899 x = fdeltaX/2. + (fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
900 - fDy2*std::sin(fPhiTwist/2.) ;
901 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
902 + (fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
903 z = fDz ;
904
905 SetCorner(sC0Max1Max, x, y, z);
906
907 // corner of Axis0min and Axis1max
908 x = fdeltaX/2. + (-fDx4 + fDy2*fTAlph)*std::cos(fPhiTwist/2.)
909 - fDy2*std::sin(fPhiTwist/2.) ;
910 y = fdeltaY/2. + fDy2*std::cos(fPhiTwist/2.)
911 + (-fDx4 + fDy2*fTAlph)*std::sin(fPhiTwist/2.) ;
912 z = fDz ;
913
914 SetCorner(sC0Min1Max, x, y, z);
915 }
916 else
917 {
918 G4Exception("G4TwistTrapParallelSide::SetCorners()",
919 "GeomSolids0001", FatalException,
920 "Method NOT implemented !");
921 }
922}
923
924//=====================================================================
925//* SetBoundaries() ---------------------------------------------------
926
928{
929 // Set direction-unit vector of boundary-lines in local coodinate.
930 //
931
932 G4ThreeVector direction;
933
934 if (fAxis[0] == kXAxis && fAxis[1] == kZAxis)
935 {
936 // sAxis0 & sAxisMin
938 direction = direction.unit();
939 SetBoundary(sAxis0 & (sAxisX | sAxisMin), direction,
941
942 // sAxis0 & sAxisMax
944 direction = direction.unit();
945 SetBoundary(sAxis0 & (sAxisX | sAxisMax), direction,
947
948 // sAxis1 & sAxisMin
950 direction = direction.unit();
951 SetBoundary(sAxis1 & (sAxisZ | sAxisMin), direction,
953
954 // sAxis1 & sAxisMax
956 direction = direction.unit();
957 SetBoundary(sAxis1 & (sAxisZ | sAxisMax), direction,
959 }
960 else
961 {
962 G4Exception("G4TwistTrapParallelSide::SetCorners()",
963 "GeomSolids0001", FatalException,
964 "Feature NOT implemented !");
965 }
966}
967
968//=====================================================================
969//* GetPhiUAtX() ------------------------------------------------------
970
971void
973 G4double& phi, G4double& u )
974{
975 // find closest point XX on surface for a given point p
976 // X0 is a point on the surface, d is the direction
977 // ( both for a fixed z = pz)
978
979 // phi is given by the z coordinate of p
980
981 phi = p.z()/(2*fDz)*fPhiTwist ;
982
983 u = ((-(fdeltaX*phi) + fPhiTwist*p.x())* std::cos(phi)
984 + (-(fdeltaY*phi) + fPhiTwist*p.y())*std::sin(phi))/fPhiTwist ;
985}
986
987//=====================================================================
988//* ProjectPoint() ----------------------------------------------------
989
991 G4bool isglobal)
992{
993 // Get Rho at p.z() on Hyperbolic Surface.
994 G4ThreeVector tmpp;
995 if (isglobal)
996 {
997 tmpp = fRot.inverse()*p - fTrans;
998 }
999 else
1000 {
1001 tmpp = p;
1002 }
1003
1004 G4double phi ;
1005 G4double u ;
1006
1007 GetPhiUAtX( tmpp, phi, u ) ; // calculate (phi, u) for p close to surface
1008
1009 G4ThreeVector xx = SurfacePoint(phi,u) ; // transform back to Cartesian coords
1010
1011 if (isglobal)
1012 {
1013 return (fRot * xx + fTrans);
1014 }
1015 else
1016 {
1017 return xx;
1018 }
1019}
1020
1021//=====================================================================
1022//* GetFacets() -------------------------------------------------------
1023
1025 G4int faces[][4], G4int iside )
1026{
1027 G4double phi ;
1028 G4double z, u ; // the two parameters for the surface equation
1029 G4ThreeVector p ; // a point on the surface, given by (z,u)
1030
1031 G4int nnode ;
1032 G4int nface ;
1033
1034 G4double umin, umax ;
1035
1036 // calculate the (n-1)*(k-1) vertices
1037
1038 for ( G4int i = 0 ; i<n ; ++i )
1039 {
1040 z = -fDz+i*(2.*fDz)/(n-1) ;
1041 phi = z*fPhiTwist/(2*fDz) ;
1042 umin = GetBoundaryMin(phi) ;
1043 umax = GetBoundaryMax(phi) ;
1044
1045 for ( G4int j = 0 ; j<k ; ++j )
1046 {
1047 nnode = GetNode(i,j,k,n,iside) ;
1048 u = umax - j*(umax-umin)/(k-1) ;
1049 p = SurfacePoint(phi,u,true) ; // surface point in global coords
1050
1051 xyz[nnode][0] = p.x() ;
1052 xyz[nnode][1] = p.y() ;
1053 xyz[nnode][2] = p.z() ;
1054
1055 if ( i<n-1 && j<k-1 ) // conterclock wise filling
1056 {
1057 nface = GetFace(i,j,k,n,iside) ;
1058 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
1059 * (GetNode(i ,j ,k,n,iside)+1) ; // fortran numbering
1060 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
1061 * (GetNode(i ,j+1,k,n,iside)+1) ;
1062 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
1063 * (GetNode(i+1,j+1,k,n,iside)+1) ;
1064 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
1065 * (GetNode(i+1,j ,k,n,iside)+1) ;
1066 }
1067 }
1068 }
1069}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static constexpr double L
Definition: G4SIunits.hh:104
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4bool DistanceSort(const Intersection &a, const Intersection &b)
G4bool EqualIntersection(const Intersection &a, const Intersection &b)
#define G4VSURFACENXX
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
HepRotation inverse() const
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:87
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)
virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol=true)
virtual G4double GetBoundaryMin(G4double phi)
virtual G4double GetBoundaryMax(G4double phi)
G4ThreeVector NormAng(G4double phi, G4double u)
virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal=false)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
virtual void GetFacets(G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside)
void GetPhiUAtX(G4ThreeVector p, G4double &phi, G4double &u)
G4TwistTrapParallelSide(const G4String &name, G4double PhiTwist, G4double pDz, G4double pTheta, G4double pPhi, G4double pDy1, G4double pDx1, G4double pDx2, G4double pDy2, G4double pDx3, G4double pDx4, G4double pAlph, G4double AngleSide)
G4ThreeVector ProjectPoint(const G4ThreeVector &p, G4bool isglobal=false)
virtual G4ThreeVector SurfacePoint(G4double phi, G4double u, G4bool isGlobal=false)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
G4bool IsValid(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4double DistanceToPlane(const G4ThreeVector &p, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4RotationMatrix fRot
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
static const G4int sAxisZ
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
CurrentStatus fCurStatWithV
static const G4int sAxisX
G4double DistanceToPlaneWithV(const G4ThreeVector &p, const G4ThreeVector &v, const G4ThreeVector &x0, const G4ThreeVector &n0, G4ThreeVector &xx)
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
@ kXAxis
Definition: geomdefs.hh:55
@ kZAxis
Definition: geomdefs.hh:57
static const G4double kInfinity
Definition: geomdefs.hh:41
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:79
const char * name(G4int ptype)