Geant4-11
G4TwistTrapFlatSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4TwistTrapFlatSide implementation
27//
28// Author: 30-Aug-2002 - O.Link (Oliver.Link@cern.ch)
29// --------------------------------------------------------------------
30
32
33//=====================================================================
34//* constructors ------------------------------------------------------
35
37 G4double PhiTwist,
38 G4double pDx1,
39 G4double pDx2,
40 G4double pDy,
41 G4double pDz,
42 G4double pAlpha,
43 G4double pPhi,
44 G4double pTheta,
45 G4int handedness)
47{
48 fHandedness = handedness; // +z = +ve, -z = -ve
49
50 fDx1 = pDx1 ;
51 fDx2 = pDx2 ;
52 fDy = pDy ;
53 fDz = pDz ;
54 fAlpha = pAlpha ;
55 fTAlph = std::tan(fAlpha) ;
56 fPhi = pPhi ;
57 fTheta = pTheta ;
58
59 fdeltaX = 2 * fDz * std::tan(fTheta) * std::cos(fPhi) ;
60 // dx in surface equation
61 fdeltaY = 2 * fDz * std::tan(fTheta) * std::sin(fPhi) ;
62 // dy in surface equation
63
64 fPhiTwist = PhiTwist ;
65
66 fCurrentNormal.normal.set( 0, 0, (fHandedness < 0 ? -1 : 1));
67 // Unit vector, in local coordinate system
69 ? 0.5 * fPhiTwist
70 : -0.5 * fPhiTwist );
71
72 fTrans.set(
73 fHandedness > 0 ? 0.5*fdeltaX : -0.5*fdeltaX ,
74 fHandedness > 0 ? 0.5*fdeltaY : -0.5*fdeltaY ,
75 fHandedness > 0 ? fDz : -fDz ) ;
76
77 fIsValidNorm = true;
78
79
80 fAxis[0] = kXAxis ;
81 fAxis[1] = kYAxis ;
82 fAxisMin[0] = kInfinity ; // x-Axis cannot be fixed, because it
83 fAxisMax[0] = kInfinity ; // depends on y
84 fAxisMin[1] = -fDy ; // y - axis
85 fAxisMax[1] = fDy ;
86
87 SetCorners();
89}
90
91
92//=====================================================================
93//* Fake default constructor ------------------------------------------
94
96 : G4VTwistSurface(a), fDx1(0.), fDx2(0.), fDy(0.), fDz(0.), fPhiTwist(0.),
97 fAlpha(0.), fTAlph(0.), fPhi(0.), fTheta(0.), fdeltaX(0.), fdeltaY(0.)
98{
99}
100
101
102//=====================================================================
103//* destructor --------------------------------------------------------
104
106{
107}
108
109//=====================================================================
110//* GetNormal ---------------------------------------------------------
111
113 G4bool isGlobal)
114{
115 if (isGlobal)
116 {
118 }
119 else
120 {
121 return fCurrentNormal.normal;
122 }
123}
124
125//=====================================================================
126//* DistanceToSurface(p, v) -------------------------------------------
127
129 const G4ThreeVector& gv,
130 G4ThreeVector gxx[],
131 G4double distance[],
132 G4int areacode[],
133 G4bool isvalid[],
134 EValidate validate)
135{
136 fCurStatWithV.ResetfDone(validate, &gp, &gv);
137
138 if (fCurStatWithV.IsDone())
139 {
140 for (G4int i=0; i<fCurStatWithV.GetNXX(); ++i)
141 {
142 gxx[i] = fCurStatWithV.GetXX(i);
143 distance[i] = fCurStatWithV.GetDistance(i);
144 areacode[i] = fCurStatWithV.GetAreacode(i);
145 isvalid[i] = fCurStatWithV.IsValid(i);
146 }
147 return fCurStatWithV.GetNXX();
148 }
149 else // initialize
150 {
151 for (auto i=0; i<2; ++i)
152 {
153 distance[i] = kInfinity;
154 areacode[i] = sOutside;
155 isvalid[i] = false;
157 }
158 }
159
162
163 //
164 // special case!
165 // if p is on surface, distance = 0.
166 //
167
168 if (std::fabs(p.z()) == 0.) // if p is on the plane
169 {
170 distance[0] = 0;
171 G4ThreeVector xx = p;
172 gxx[0] = ComputeGlobalPoint(xx);
173
174 if (validate == kValidateWithTol)
175 {
176 areacode[0] = GetAreaCode(xx);
177 if (!IsOutside(areacode[0]))
178 {
179 isvalid[0] = true;
180 }
181 }
182 else if (validate == kValidateWithoutTol)
183 {
184 areacode[0] = GetAreaCode(xx, false);
185 if (IsInside(areacode[0]))
186 {
187 isvalid[0] = true;
188 }
189 }
190 else // kDontValidate
191 {
192 areacode[0] = sInside;
193 isvalid[0] = true;
194 }
195 return 1;
196 }
197 //
198 // special case end
199 //
200
201 if (v.z() == 0) {
202
203 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
204 isvalid[0], 0, validate, &gp, &gv);
205 return 0;
206 }
207
208 distance[0] = - (p.z() / v.z());
209
210 G4ThreeVector xx = p + distance[0]*v;
211 gxx[0] = ComputeGlobalPoint(xx);
212
213 if (validate == kValidateWithTol)
214 {
215 areacode[0] = GetAreaCode(xx);
216 if (!IsOutside(areacode[0]))
217 {
218 if (distance[0] >= 0) isvalid[0] = true;
219 }
220 }
221 else if (validate == kValidateWithoutTol)
222 {
223 areacode[0] = GetAreaCode(xx, false);
224 if (IsInside(areacode[0]))
225 {
226 if (distance[0] >= 0) isvalid[0] = true;
227 }
228 }
229 else // kDontValidate
230 {
231 areacode[0] = sInside;
232 if (distance[0] >= 0) isvalid[0] = true;
233 }
234
235 fCurStatWithV.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
236 isvalid[0], 1, validate, &gp, &gv);
237
238#ifdef G4TWISTDEBUG
239 G4cerr << "ERROR - G4TwistTrapFlatSide::DistanceToSurface(p,v)" << G4endl;
240 G4cerr << " Name : " << GetName() << G4endl;
241 G4cerr << " xx : " << xx << G4endl;
242 G4cerr << " gxx[0] : " << gxx[0] << G4endl;
243 G4cerr << " dist[0] : " << distance[0] << G4endl;
244 G4cerr << " areacode[0] : " << areacode[0] << G4endl;
245 G4cerr << " isvalid[0] : " << isvalid[0] << G4endl;
246#endif
247 return 1;
248}
249
250//=====================================================================
251//* DistanceToSurface(p) ----------------------------------------------
252
254 G4ThreeVector gxx[],
255 G4double distance[],
256 G4int areacode[])
257{
258 // Calculate distance to plane in local coordinate,
259 // then return distance and global intersection points.
260 //
261
263
264 if (fCurStat.IsDone())
265 {
266 for (G4int i=0; i<fCurStat.GetNXX(); ++i)
267 {
268 gxx[i] = fCurStat.GetXX(i);
269 distance[i] = fCurStat.GetDistance(i);
270 areacode[i] = fCurStat.GetAreacode(i);
271 }
272 return fCurStat.GetNXX();
273 }
274 else // initialize
275 {
276 for (auto i=0; i<2; ++i)
277 {
278 distance[i] = kInfinity;
279 areacode[i] = sOutside;
281 }
282 }
283
285 G4ThreeVector xx;
286
287 // The plane is placed on origin with making its normal
288 // parallel to z-axis.
289 if (std::fabs(p.z()) <= 0.5 * kCarTolerance)
290 { // if p is on the plane, return 1
291 distance[0] = 0;
292 xx = p;
293 }
294 else
295 {
296 distance[0] = std::fabs(p.z());
297 xx.set(p.x(), p.y(), 0);
298 }
299
300 gxx[0] = ComputeGlobalPoint(xx);
301 areacode[0] = sInside;
302 G4bool isvalid = true;
303 fCurStat.SetCurrentStatus(0, gxx[0], distance[0], areacode[0],
304 isvalid, 1, kDontValidate, &gp);
305 return 1;
306
307}
308
309//=====================================================================
310//* GetAreaCode() -----------------------------------------------------
311
313 G4bool withTol)
314{
315
316 static const G4double ctol = 0.5 * kCarTolerance;
317 G4int areacode = sInside;
318
319 if (fAxis[0] == kXAxis && fAxis[1] == kYAxis)
320 {
321 G4int yaxis = 1;
322
323 G4double wmax = xAxisMax(xx.y(), fTAlph ) ;
324 G4double wmin = -xAxisMax(xx.y(), -fTAlph ) ;
325
326 if (withTol)
327 {
328 G4bool isoutside = false;
329
330 // test boundary of x-axis
331
332 if (xx.x() < wmin + ctol)
333 {
334 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary;
335 if (xx.x() <= wmin - ctol) isoutside = true;
336
337 }
338 else if (xx.x() > wmax - ctol)
339 {
340 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
341 if (xx.x() >= wmax + ctol) isoutside = true;
342 }
343
344 // test boundary of y-axis
345
346 if (xx.y() < fAxisMin[yaxis] + ctol)
347 {
348 areacode |= (sAxis1 & (sAxisY | sAxisMin));
349
350 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
351 else areacode |= sBoundary;
352 if (xx.y() <= fAxisMin[yaxis] - ctol) isoutside = true;
353
354 }
355 else if (xx.y() > fAxisMax[yaxis] - ctol)
356 {
357 areacode |= (sAxis1 & (sAxisY | sAxisMax));
358
359 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
360 else areacode |= sBoundary;
361 if (xx.y() >= fAxisMax[yaxis] + ctol) isoutside = true;
362 }
363
364 // if isoutside = true, clear inside bit.
365 // if not on boundary, add axis information.
366
367 if (isoutside)
368 {
369 G4int tmpareacode = areacode & (~sInside);
370 areacode = tmpareacode;
371 }
372 else if ((areacode & sBoundary) != sBoundary)
373 {
374 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisY);
375 }
376 }
377 else
378 {
379 // boundary of x-axis
380
381 if (xx.x() < wmin )
382 {
383 areacode |= (sAxis0 & (sAxisX | sAxisMin)) | sBoundary;
384 }
385 else if (xx.x() > wmax)
386 {
387 areacode |= (sAxis0 & (sAxisX | sAxisMax)) | sBoundary;
388 }
389
390 // boundary of y-axis
391
392 if (xx.y() < fAxisMin[yaxis])
393 {
394 areacode |= (sAxis1 & (sAxisY | sAxisMin));
395 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
396 else areacode |= sBoundary;
397
398 }
399 else if (xx.y() > fAxisMax[yaxis])
400 {
401 areacode |= (sAxis1 & (sAxisY | sAxisMax)) ;
402 if (areacode & sBoundary) areacode |= sCorner; // xx is on corner.
403 else areacode |= sBoundary;
404 }
405
406 if ((areacode & sBoundary) != sBoundary)
407 {
408 areacode |= (sAxis0 & sAxisX) | (sAxis1 & sAxisY);
409 }
410 }
411 return areacode;
412 }
413 else
414 {
415 G4Exception("G4TwistTrapFlatSide::GetAreaCode()",
416 "GeomSolids0001", FatalException,
417 "Feature NOT implemented !");
418 }
419
420 return areacode;
421}
422
423//=====================================================================
424//* SetCorners --------------------------------------------------------
425
427{
428 // Set Corner points in local coodinate.
429
430 if (fAxis[0] == kXAxis && fAxis[1] == kYAxis)
431 {
432 G4double x, y, z;
433
434 // corner of Axis0min and Axis1min
435 x = -fDx1 + fDy * fTAlph ;
436 y = -fDy ;
437 z = 0 ;
438 SetCorner(sC0Min1Min, x, y, z);
439
440 // corner of Axis0max and Axis1min
441 x = fDx1 + fDy * fTAlph ;
442 y = -fDy ;
443 z = 0 ;
444 SetCorner(sC0Max1Min, x, y, z);
445
446 // corner of Axis0max and Axis1max
447 x = fDx2 - fDy * fTAlph ;
448 y = fDy ;
449 z = 0 ;
450 SetCorner(sC0Max1Max, x, y, z);
451
452 // corner of Axis0min and Axis1max
453 x = -fDx2 - fDy * fTAlph ;
454 y = fDy ;
455 z = 0 ;
456 SetCorner(sC0Min1Max, x, y, z);
457
458 }
459 else
460 {
461 std::ostringstream message;
462 message << "Feature NOT implemented !" << G4endl
463 << " fAxis[0] = " << fAxis[0] << G4endl
464 << " fAxis[1] = " << fAxis[1];
465 G4Exception("G4TwistTrapFlatSide::SetCorners()",
466 "GeomSolids0001", FatalException, message);
467 }
468}
469
470//=====================================================================
471//* SetBoundaries() ---------------------------------------------------
472
474{
475 // Set direction-unit vector of phi-boundary-lines in local coodinate.
476 // Don't call the function twice.
477
478 G4ThreeVector direction ;
479
480 if (fAxis[0] == kXAxis && fAxis[1] == kYAxis)
481 {
482 // sAxis0 & sAxisMin
483 direction = - ( GetCorner(sC0Min1Max) - GetCorner(sC0Min1Min) ) ;
484 direction = direction.unit();
485 SetBoundary(sAxis0 & (sAxisX | sAxisMin), direction,
487
488 // sAxis0 & sAxisMax
489 direction = GetCorner(sC0Max1Max) - GetCorner(sC0Max1Min) ; // inverse
490 direction = direction.unit();
491 SetBoundary(sAxis0 & (sAxisX | sAxisMax), direction,
493
494 // sAxis1 & sAxisMin
496 direction = direction.unit();
497 SetBoundary(sAxis1 & (sAxisY | sAxisMin), direction,
499
500 // sAxis1 & sAxisMax
501 direction = - ( GetCorner(sC0Max1Max) - GetCorner(sC0Min1Max) ) ;
502 direction = direction.unit();
503 SetBoundary(sAxis1 & (sAxisY | sAxisMax), direction,
505
506 }
507 else
508 {
509 std::ostringstream message;
510 message << "Feature NOT implemented !" << G4endl
511 << " fAxis[0] = " << fAxis[0] << G4endl
512 << " fAxis[1] = " << fAxis[1];
513 G4Exception("G4TwistTrapFlatSide::SetCorners()",
514 "GeomSolids0001", FatalException, message);
515 }
516}
517
518//=====================================================================
519//* GetFacets() -------------------------------------------------------
520
522 G4int faces[][4], G4int iside )
523{
524 G4double x,y ; // the two parameters for the surface equation
525 G4ThreeVector p ; // a point on the surface, given by (z,u)
526
527 G4int nnode ;
528 G4int nface ;
529
530 G4double xmin,xmax ;
531
532 // calculate the (n-1)*(k-1) vertices
533
534 for ( G4int i = 0 ; i<n ; ++i )
535 {
536 y = -fDy + i*(2*fDy)/(n-1) ;
537
538 for ( G4int j = 0 ; j<k ; ++j )
539 {
540 xmin = GetBoundaryMin(y) ;
541 xmax = GetBoundaryMax(y) ;
542 x = xmin + j*(xmax-xmin)/(k-1) ;
543
544 nnode = GetNode(i,j,k,n,iside) ;
545 p = SurfacePoint(x,y,true) ; // surface point in global coordinate system
546
547 xyz[nnode][0] = p.x() ;
548 xyz[nnode][1] = p.y() ;
549 xyz[nnode][2] = p.z() ;
550
551 if ( i<n-1 && j<k-1 )
552 {
553 nface = GetFace(i,j,k,n,iside) ;
554
555 if (fHandedness < 0) // lower side
556 {
557 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,1)
558 * ( GetNode(i ,j ,k,n,iside)+1) ;
559 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,1)
560 * ( GetNode(i+1,j ,k,n,iside)+1) ;
561 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,1)
562 * ( GetNode(i+1,j+1,k,n,iside)+1) ;
563 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,1)
564 * ( GetNode(i ,j+1,k,n,iside)+1) ;
565 }
566 else // upper side
567 {
568 faces[nface][0] = GetEdgeVisibility(i,j,k,n,0,-1)
569 * ( GetNode(i ,j ,k,n,iside)+1) ;
570 faces[nface][1] = GetEdgeVisibility(i,j,k,n,1,-1)
571 * ( GetNode(i ,j+1,k,n,iside)+1) ;
572 faces[nface][2] = GetEdgeVisibility(i,j,k,n,2,-1)
573 * ( GetNode(i+1,j+1,k,n,iside)+1) ;
574 faces[nface][3] = GetEdgeVisibility(i,j,k,n,3,-1)
575 * ( GetNode(i+1,j ,k,n,iside)+1) ;
576 }
577 }
578 }
579 }
580}
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
const G4double fAlpha
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
HepRotation & rotateZ(double delta)
Definition: Rotation.cc:87
virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol=true)
virtual void GetFacets(G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside)
virtual G4ThreeVector GetNormal(const G4ThreeVector &, G4bool isGlobal=false)
virtual G4double GetBoundaryMin(G4double u)
virtual void SetBoundaries()
double xAxisMax(G4double u, G4double fTanAlpha) const
virtual G4double GetBoundaryMax(G4double u)
virtual G4ThreeVector SurfacePoint(G4double x, G4double y, G4bool isGlobal=false)
G4TwistTrapFlatSide(const G4String &name, G4double PhiTwist, G4double pDx1, G4double pDx2, G4double pDy, G4double pDz, G4double pAlpha, G4double pPhi, G4double pTheta, G4int handedness)
virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate=kValidateWithTol)
G4int GetAreacode(G4int i) const
G4double GetDistance(G4int i) const
G4bool IsValid(G4int i) const
void SetCurrentStatus(G4int i, G4ThreeVector &xx, G4double &dist, G4int &areacode, G4bool &isvalid, G4int nxx, EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
G4ThreeVector GetXX(G4int i) const
void ResetfDone(EValidate validate, const G4ThreeVector *p, const G4ThreeVector *v=nullptr)
static const G4int sC0Min1Min
static const G4int sC0Min1Max
G4int GetNode(G4int i, G4int j, G4int m, G4int n, G4int iside)
static const G4int sOutside
G4ThreeVector ComputeGlobalDirection(const G4ThreeVector &lp) const
static const G4int sAxisMax
static const G4int sAxis0
G4int GetFace(G4int i, G4int j, G4int m, G4int n, G4int iside)
G4double fAxisMax[2]
G4RotationMatrix fRot
G4int GetEdgeVisibility(G4int i, G4int j, G4int m, G4int n, G4int number, G4int orientation)
G4ThreeVector ComputeLocalDirection(const G4ThreeVector &gp) const
static const G4int sAxisMin
static const G4int sC0Max1Max
static const G4int sAxis1
G4bool IsInside(G4int areacode, G4bool testbitmode=false) const
G4ThreeVector fTrans
virtual void SetBoundary(const G4int &axiscode, const G4ThreeVector &direction, const G4ThreeVector &x0, const G4int &boundarytype)
G4ThreeVector ComputeLocalPoint(const G4ThreeVector &gp) const
void SetCorner(G4int areacode, G4double x, G4double y, G4double z)
G4ThreeVector GetCorner(G4int areacode) const
static const G4int sBoundary
G4bool IsOutside(G4int areacode) const
G4double fAxisMin[2]
static const G4int sCorner
static const G4int sC0Max1Min
static const G4int sInside
virtual G4String GetName() const
CurrentStatus fCurStatWithV
static const G4int sAxisY
static const G4int sAxisX
G4ThreeVector ComputeGlobalPoint(const G4ThreeVector &lp) const
G4SurfCurNormal fCurrentNormal
CurrentStatus fCurStat
@ kYAxis
Definition: geomdefs.hh:56
@ kXAxis
Definition: geomdefs.hh:55
static const G4double kInfinity
Definition: geomdefs.hh:41
const char * name(G4int ptype)