Geant4-11
G4StrawTubeXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
28
29#include "G4Gamma.hh"
31#include "G4SystemOfUnits.hh"
32
34// Constructor, destructor
36 G4Material* foilMat,
37 G4Material* gasMat, G4double a,
38 G4double b, G4Material* mediumMat,
39 G4bool unishut,
40 const G4String& processName)
41 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, 1, processName)
42{
43 if(verboseLevel > 0)
44 G4cout << "Straw tube X-ray TR radiator EM process is called" << G4endl;
45
46 if(unishut)
47 {
48 fAlphaPlate = 1. / 3.;
49 fAlphaGas = 12.4;
50 if(verboseLevel > 0)
51 G4cout << "straw uniform shooting: "
52 << "fAlphaPlate = " << fAlphaPlate
53 << " ; fAlphaGas = " << fAlphaGas << G4endl;
54 }
55 else
56 {
57 fAlphaPlate = 0.5;
58 fAlphaGas = 5.;
59 if(verboseLevel > 0)
60 G4cout << "straw isotropical shooting: "
61 << "fAlphaPlate = " << fAlphaPlate
62 << " ; fAlphaGas = " << fAlphaGas << G4endl;
63 }
64
65 // index of medium material
66 fMatIndex3 = mediumMat->GetIndex();
67 if(verboseLevel > 0)
68 G4cout << "medium material = " << mediumMat->GetName() << G4endl;
69
70 // plasma energy squared for plate material
71 fSigma3 = fPlasmaCof * mediumMat->GetElectronDensity();
72 if(verboseLevel > 0)
73 G4cout << "medium plasma energy = " << std::sqrt(fSigma3) / eV << " eV"
74 << G4endl;
75
76 // Compute cofs for preparation of linear photo absorption in external medium
78}
79
82
83void G4StrawTubeXTRadiator::ProcessDescription(std::ostream& out) const
84{
85 out << "Simulation of forward X-ray transition radiation for the case of\n"
86 "a straw tube radiator.\n";
87}
88
90// Approximation for radiator interference factor for the case of
91// straw tube radiator. The plate (window, straw wall) and gas (inside straw)
92// gap thicknesses are gamma distributed.
93// The mean values of the plate and gas gap thicknesses
94// are supposed to be about XTR formation zone.
96 G4double varAngle)
97{
98 G4double result, L2, L3, M2, M3;
99
100 L2 = GetPlateFormationZone(energy, gamma, varAngle);
101 L3 = GetGasFormationZone(energy, gamma, varAngle);
102
105
106 G4complex C2(1.0 + 0.5 * fPlateThick * M2 / fAlphaPlate,
107 fPlateThick / L2 / fAlphaPlate);
108 G4complex C3(1.0 + 0.5 * fGasThick * M3 / fAlphaGas,
109 fGasThick / L3 / fAlphaGas);
110
111 G4complex H2 = std::pow(C2, -fAlphaPlate);
112 G4complex H3 = std::pow(C3, -fAlphaGas);
113 G4complex H = H2 * H3;
114
115 G4complex Z1 = GetMediumComplexFZ(energy, gamma, varAngle);
116 G4complex Z2 = GetPlateComplexFZ(energy, gamma, varAngle);
117 G4complex Z3 = GetGasComplexFZ(energy, gamma, varAngle);
118
119 G4complex R = (Z1 - Z2) * (Z1 - Z2) * (1. - H2 * H) +
120 (Z2 - Z3) * (Z2 - Z3) * (1. - H3) +
121 2. * (Z1 - Z2) * (Z2 - Z3) * H2 * (1. - H3);
122
123 result = 2.0 * std::real(R) * (varAngle * energy / hbarc / hbarc);
124
125 return result;
126}
127
129// Calculates formation zone for external medium. Omega is energy !!!
131 G4double gamma,
132 G4double varAngle)
133{
134 G4double cof, lambda;
135 lambda = 1.0 / gamma / gamma + varAngle + fSigma3 / omega / omega;
136 cof = 2.0 * hbarc / omega / lambda;
137 return cof;
138}
139
141// Calculates complex formation zone for external medium. Omega is energy !!!
143 G4double gamma,
144 G4double varAngle)
145{
146 G4double cof, length, delta, real_v, image_v;
147
148 length = 0.5 * GetMediumFormationZone(omega, gamma, varAngle);
149 delta = length * GetMediumLinearPhotoAbs(omega);
150 cof = 1.0 / (1.0 + delta * delta);
151
152 real_v = length * cof;
153 image_v = real_v * delta;
154
155 G4complex zone(real_v, image_v);
156 return zone;
157}
158
160// Computes matrix of Sandia photo absorption cross section coefficients for
161// medium material
163{
164 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
165 const G4Material* mat = (*theMaterialTable)[fMatIndex3];
167}
168
170// Returns the value of linear photo absorption coefficient (in reciprocal
171// length) for medium for given energy of X-ray photon omega
173{
174 G4double omega2, omega3, omega4;
175
176 omega2 = omega * omega;
177 omega3 = omega2 * omega;
178 omega4 = omega2 * omega2;
179
180 const G4double* SandiaCof =
182
183 G4double cross = SandiaCof[0] / omega + SandiaCof[1] / omega2 +
184 SandiaCof[2] / omega3 + SandiaCof[3] / omega4;
185 return cross;
186}
std::vector< G4Material * > G4MaterialTable
static constexpr double eV
Definition: G4SIunits.hh:201
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
std::complex< G4double > G4complex
Definition: G4Types.hh:88
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
const double C2
#define C3
G4SandiaTable * GetSandiaTable() const
Definition: G4Material.hh:225
G4double GetElectronDensity() const
Definition: G4Material.hh:213
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:672
const G4String & GetName() const
Definition: G4Material.hh:173
size_t GetIndex() const
Definition: G4Material.hh:256
G4double GetSandiaCofForMaterial(G4int, G4int) const
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override
void ProcessDescription(std::ostream &) const override
G4SandiaTable * fMediumPhotoAbsCof
G4StrawTubeXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4Material *, G4bool unishut=false, const G4String &processName="StrawTubeXTRadiator")
G4double GetMediumFormationZone(G4double, G4double, G4double)
G4double GetMediumLinearPhotoAbs(G4double)
G4complex GetMediumComplexFZ(G4double, G4double, G4double)
G4int verboseLevel
Definition: G4VProcess.hh:356
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex GetPlateComplexFZ(G4double, G4double, G4double)
static constexpr G4double fPlasmaCof
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4complex GetGasComplexFZ(G4double, G4double, G4double)
G4double energy(const ThreeVector &p, const G4double m)
static const G4double Z1[5]
Definition: paraMaker.cc:41
float hbarc
Definition: hepunit.py:264