Geant4-11
G4MicroElecLOPhononModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// G4MicroElecLOPhononModel.cc,
28// 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b]
29// Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
30// M. Raine and D. Lambert are with CEA [a]
31//
32// A part of this work has been funded by the French space agency(CNES[c])
33// [a] CEA, DAM, DIF - 91297 ARPAJON, France
34// [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
35// [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
36//
37// Based on the following publications
38//
39// - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
40// Electron emission yield for low energy electrons:
41// Monte Carlo simulation and experimental comparison for Al, Ag, and Si
42// Journal of Applied Physics 121 (2017) 215107.
43// https://doi.org/10.1063/1.4984761
44//
45// - P. Caron,
46// Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
47// PHD, 16th October 2019
48//
49// - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech,
50// Geant4 physics processes for microdosimetry and secondary electron emission simulation :
51// Extension of MicroElec to very low energies and new materials
52// NIM B, 2020, in review.
53//
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
58#include "G4SystemOfUnits.hh"
60
62 const G4String& nam)
63 : G4VEmModel(nam)
64{
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
69
71{}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
74
76 const G4DataVector& /*cuts*/)
77{
78 if (isInitialised) { return; }
80 isInitialised = true;
81}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
84
87 G4double ekin,
89{
90 if (material->GetName()!="G4_SILICON_DIOXIDE") return 0.0;
91
97
98 // Parameters SiO2
99 phononEnergy = (0.75*0.153+0.25*0.063 )* CLHEP::eV;
100 const G4double eps = 3.84;
101 const G4double einf = 2.25;
102 const G4double T = 300; // should be taken from material property
103
104 G4double E =(ekin/CLHEP::eV)*e;
105
106 G4double hw = (phononEnergy / CLHEP::eV) * e;
107 G4double n = 1.0 / (std::exp(hw / (kb*T)) - 1); //Phonon distribution
108
109 G4double signe = (absor) ? -1. : 1.;
110
111 G4double racine = std::sqrt(1. + ((-signe*hw) / E));
112
113 G4double P = (std::pow(e, 2) / (4 * pi*eps0*h*h)) * (n + 0.5 + signe*0.5) * ((1 / einf) - (1 / eps))
114 * std::sqrt(m0 / (2 * E)) *hw* std::log((1 + racine) / (signe * 1 + ((-signe)*racine)));
115
116 G4double MFP = (std::sqrt(2. * E / m0) / P)*m;
117 return 2. / MFP;
118}
119
120//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121
123 std::vector<G4DynamicParticle*>*,
125 const G4DynamicParticle* aDynamicElectron,
127{
128
129 G4double E = aDynamicElectron->GetKineticEnergy();
130 G4double Eprim = (absor) ? E + phononEnergy : E - phononEnergy;
131
132 G4double rand = G4UniformRand();
133 G4double B = (E + Eprim + 2 * std::sqrt(E*Eprim)) / (E + Eprim - 2 * std::sqrt(E*Eprim));
134 G4double cosTheta = ((E + Eprim) / (2 * std::sqrt(E*Eprim)))*(1 - std::pow(B, rand)) + std::pow(B, rand);
135
136 if(Interband){
137 cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
138 }
139 G4double phi = twopi * G4UniformRand();
140 G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
141 G4ThreeVector xVers = zVers.orthogonal();
142 G4ThreeVector yVers = zVers.cross(xVers);
143
144 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
145 G4double yDir = xDir;
146 xDir *= std::cos(phi);
147 yDir *= std::sin(phi);
148
149 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
150
153}
154
155//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double B(G4double temperature)
static const G4double eps
static constexpr double m
Definition: G4SIunits.hh:109
static constexpr double twopi
Definition: G4SIunits.hh:56
static constexpr double pi
Definition: G4SIunits.hh:55
double G4double
Definition: G4Types.hh:83
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax) override
G4ParticleChangeForGamma * fParticleChangeForGamma
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4MicroElecLOPhononModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="G4MicroElecLOPhononModel")
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
static constexpr double eplus
static constexpr double electron_mass_c2
static constexpr double m2
static constexpr double farad
static constexpr double k_Boltzmann
static constexpr double kg
static constexpr double kelvin
static constexpr double hbar_Planck
static constexpr double epsilon0
static constexpr double c_squared
static constexpr double eV
static constexpr double coulomb
static constexpr double joule
static constexpr double m
static constexpr double s
string material
Definition: eplot.py:19
static double P[]