Geant4-11
G4EmDNAChemistry_option1.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
27
29#include "G4SystemOfUnits.hh"
30
34#include "G4ProcessManager.hh"
35
37
38// *** Processes and models for Geant4-DNA
39
41
42#include "G4DNAAttachment.hh"
43#include "G4DNAVibExcitation.hh"
44
45#include "G4DNAElastic.hh"
49
56
58
59// particles
60
61#include "G4Electron.hh"
62#include "G4Proton.hh"
63#include "G4GenericIon.hh"
64
65#include "G4MoleculeTable.hh"
66#include "G4H2O.hh"
67#include "G4H2.hh"
68#include "G4Hydrogen.hh"
69#include "G4OH.hh"
70#include "G4H3O.hh"
71#include "G4Electron_aq.hh"
72#include "G4H2O2.hh"
73
75#include "G4BuilderType.hh"
76
77/****/
79#include "G4ProcessVector.hh"
80#include "G4ProcessTable.hh"
83/****/
84
85// factory
87
89
90#include "G4Threading.hh"
91
94{
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
99
101{
102}
103
104//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105
107{
108 //-----------------------------------
109 G4Electron::Definition(); // safety
110
111 //-----------------------------------
112 // Create the definition
120
121 //____________________________________________________________________________
122
125 9.46e-9 * (m2/s));
127 CreateConfiguration("OHm", // just a tag to store and retrieve from
128 // G4MoleculeTable
130 -1, // charge
131 5.3e-9 * (m2 / s));
132 OHm->SetMass(17.0079 * g / Avogadro * c_squared);
135 2.2e-9 * (m2/s));
142 4.8e-9 * (m2/s));
145 2.3e-9 * (m2/s));
146}
147
148//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
149
151{
152 //-----------------------------------
153 //Get the molecular configuration
166
167 //-------------------------------------
168 //Define the decay channels
172
175
177 // EXCITATIONS //
179 G4DNAWaterExcitationStructure waterExcitation;
180 //--------------------------------------------------------
181 //---------------Excitation on the fifth layer------------
182
183 decCh1 = new G4MolecularDissociationChannel("A^1B_1_Relaxation");
184 decCh2 = new G4MolecularDissociationChannel("A^1B_1_DissociativeDecay");
185 //Decay 1 : OH + H
186 decCh1->SetEnergy(waterExcitation.ExcitationEnergy(0));
187 decCh1->SetProbability(0.35);
188 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::NoDisplacement);
189
190 decCh2->AddProduct(OH);
191 decCh2->AddProduct(H);
192 decCh2->SetProbability(0.65);
193 decCh2->SetDisplacementType(
194 G4DNAWaterDissociationDisplacer::A1B1_DissociationDecay);
195
196// water->AddExcitedState("A^1B_1");
197 occ->RemoveElectron(4, 1); // this is the transition form ground state to
198 occ->AddElectron(5, 1); // the first unoccupied orbital: A^1B_1
199
200 water->NewConfigurationWithElectronOccupancy("A^1B_1", *occ);
201 water->AddDecayChannel("A^1B_1", decCh1);
202 water->AddDecayChannel("A^1B_1", decCh2);
203
204 //--------------------------------------------------------
205 //---------------Excitation on the fourth layer-----------
206 decCh1 = new G4MolecularDissociationChannel("B^1A_1_Relaxation_Channel");
207 decCh2 = new G4MolecularDissociationChannel("B^1A_1_DissociativeDecay");
209 "B^1A_1_AutoIonisation_Channel");
210
211 //Decay 1 : energy
212 decCh1->SetEnergy(waterExcitation.ExcitationEnergy(1));
213 decCh1->SetProbability(0.3);
214
215 //Decay 2 : 2OH + H_2
216 decCh2->AddProduct(H2);
217 decCh2->AddProduct(OH);
218 decCh2->AddProduct(OH);
219 decCh2->SetProbability(0.15);
220 decCh2->SetDisplacementType(
221 G4DNAWaterDissociationDisplacer::B1A1_DissociationDecay);
222
223 //Decay 3 : OH + H_3Op + e_aq
224 decCh3->AddProduct(OH);
225 decCh3->AddProduct(H3O);
226 decCh3->AddProduct(e_aq);
227 decCh3->SetProbability(0.55);
228 decCh3->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
229
230 *occ = *(water->GetGroundStateElectronOccupancy());
231 occ->RemoveElectron(3); // this is the transition form ground state to
232 occ->AddElectron(5, 1); // the first unoccupied orbital: B^1A_1
233
234 water->NewConfigurationWithElectronOccupancy("B^1A_1", *occ);
235 water->AddDecayChannel("B^1A_1", decCh1);
236 water->AddDecayChannel("B^1A_1", decCh2);
237 water->AddDecayChannel("B^1A_1", decCh3);
238
239 //-------------------------------------------------------
240 //-------------------Excitation of 3rd layer-----------------
242 "Excitation3rdLayer_AutoIonisation_Channel");
244 "Excitation3rdLayer_Relaxation_Channel");
245
246 //Decay channel 1 : : OH + H_3Op + e_aq
247 decCh1->AddProduct(OH);
248 decCh1->AddProduct(H3O);
249 decCh1->AddProduct(e_aq);
250
251 decCh1->SetProbability(0.5);
252 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
253
254 //Decay channel 2 : energy
255 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(2));
256 decCh2->SetProbability(0.5);
257
258 //Electronic configuration of this decay
259 *occ = *(water->GetGroundStateElectronOccupancy());
260 occ->RemoveElectron(2, 1);
261 occ->AddElectron(5, 1);
262
263 //Configure the water molecule
264 water->NewConfigurationWithElectronOccupancy("Excitation3rdLayer", *occ);
265 water->AddDecayChannel("Excitation3rdLayer", decCh1);
266 water->AddDecayChannel("Excitation3rdLayer", decCh2);
267
268 //-------------------------------------------------------
269 //-------------------Excitation of 2nd layer-----------------
271 "Excitation2ndLayer_AutoIonisation_Channel");
273 "Excitation2ndLayer_Relaxation_Channel");
274
275 //Decay Channel 1 : : OH + H_3Op + e_aq
276 decCh1->AddProduct(OH);
277 decCh1->AddProduct(H3O);
278 decCh1->AddProduct(e_aq);
279
280 decCh1->SetProbability(0.5);
281 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
282
283 //Decay channel 2 : energy
284 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(3));
285 decCh2->SetProbability(0.5);
286
287 *occ = *(water->GetGroundStateElectronOccupancy());
288 occ->RemoveElectron(1, 1);
289 occ->AddElectron(5, 1);
290
291 water->NewConfigurationWithElectronOccupancy("Excitation2ndLayer", *occ);
292 water->AddDecayChannel("Excitation2ndLayer", decCh1);
293 water->AddDecayChannel("Excitation2ndLayer", decCh2);
294
295 //-------------------------------------------------------
296 //-------------------Excitation of 1st layer-----------------
298 "Excitation1stLayer_AutoIonisation_Channel");
300 "Excitation1stLayer_Relaxation_Channel");
301
302 *occ = *(water->GetGroundStateElectronOccupancy());
303 occ->RemoveElectron(0, 1);
304 occ->AddElectron(5, 1);
305
306 //Decay Channel 1 : : OH + H_3Op + e_aq
307 decCh1->AddProduct(OH);
308 decCh1->AddProduct(H3O);
309 decCh1->AddProduct(e_aq);
310 decCh1->SetProbability(0.5);
311 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
312
313 //Decay channel 2 : energy
314 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(4));
315 decCh2->SetProbability(0.5);
316
317 water->NewConfigurationWithElectronOccupancy("Excitation1stLayer", *occ);
318 water->AddDecayChannel("Excitation1stLayer", decCh1);
319 water->AddDecayChannel("Excitation1stLayer", decCh2);
320
322 // IONISATION //
324 //--------------------------------------------------------
325 //------------------- Ionisation -------------------------
326
327 decCh1 = new G4MolecularDissociationChannel("Ionisation_Channel");
328
329 //Decay Channel 1 : : OH + H_3Op
330 decCh1->AddProduct(H3O);
331 decCh1->AddProduct(OH);
332 decCh1->SetProbability(1);
333 decCh1->SetDisplacementType(
334 G4DNAWaterDissociationDisplacer::Ionisation_DissociationDecay);
335
336 *occ = *(water->GetGroundStateElectronOccupancy());
337 occ->RemoveElectron(4, 1);
338 // this is a ionized h2O with a hole in its last orbital
339 water->NewConfigurationWithElectronOccupancy("Ionisation5", *occ);
340 water->AddDecayChannel("Ionisation5",
341 decCh1);
342
343 *occ = *(water->GetGroundStateElectronOccupancy());
344 occ->RemoveElectron(3, 1);
345 water->NewConfigurationWithElectronOccupancy("Ionisation4", *occ);
346 water->AddDecayChannel("Ionisation4",
347 new G4MolecularDissociationChannel(*decCh1));
348
349 *occ = *(water->GetGroundStateElectronOccupancy());
350 occ->RemoveElectron(2, 1);
351 water->NewConfigurationWithElectronOccupancy("Ionisation3", *occ);
352 water->AddDecayChannel("Ionisation3",
353 new G4MolecularDissociationChannel(*decCh1));
354
355 *occ = *(water->GetGroundStateElectronOccupancy());
356 occ->RemoveElectron(1, 1);
357 water->NewConfigurationWithElectronOccupancy("Ionisation2", *occ);
358 water->AddDecayChannel("Ionisation2",
359 new G4MolecularDissociationChannel(*decCh1));
360
361 *occ = *(water->GetGroundStateElectronOccupancy());
362 occ->RemoveElectron(0, 1);
363 water->NewConfigurationWithElectronOccupancy("Ionisation1", *occ);
364 water->AddDecayChannel("Ionisation1",
365 new G4MolecularDissociationChannel(*decCh1));
366
368 // Dissociative Attachment //
370 decCh1 = new G4MolecularDissociationChannel("DissociativeAttachment");
371
372 //Decay 1 : 2OH + H_2
373 decCh1->AddProduct(H2);
374 decCh1->AddProduct(OHm);
375 decCh1->AddProduct(OH);
376 decCh1->SetProbability(1);
378 DissociativeAttachment);
379
380 *occ = *(water->GetGroundStateElectronOccupancy());
381 occ->AddElectron(5, 1); // H_2O^-
382 water->NewConfigurationWithElectronOccupancy("DissociativeAttachment", *occ);
383 water->AddDecayChannel("DissociativeAttachment", decCh1);
384
386 // Electron-hole recombination //
388 decCh1 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay1");
389 decCh2 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay2");
390 decCh3 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay3");
391
392 //Decay 1 : 2OH + H_2
393 decCh1->AddProduct(H2);
394 decCh1->AddProduct(OH);
395 decCh1->AddProduct(OH);
396 decCh1->SetProbability(0.15);
398 B1A1_DissociationDecay);
399
400 //Decay 2 : OH + H
401 decCh2->AddProduct(OH);
402 decCh2->AddProduct(H);
403 decCh2->SetProbability(0.55);
405 A1B1_DissociationDecay);
406
407 //Decay 3 : relaxation
408 decCh3->SetProbability(0.30);
409
410 const auto pH2Ovib = G4H2O::Definition()->NewConfiguration("H2Ovib");
411 assert(pH2Ovib != nullptr);
412
413 water->AddDecayChannel(pH2Ovib, decCh1);
414 water->AddDecayChannel(pH2Ovib, decCh2);
415 water->AddDecayChannel(pH2Ovib, decCh3);
416
417 delete occ;
418}
419
420//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
421
423 theReactionTable)
424{
425 //-----------------------------------
426 //Get the molecular configuration
441
442 //------------------------------------------------------------------
443 // e_aq + e_aq + 2H2O -> H2 + 2OH-
444 G4DNAMolecularReactionData* reactionData =
445 new G4DNAMolecularReactionData(0.636e10 * (1e-3 * m3 / (mole * s)), e_aq, e_aq);
446 reactionData->AddProduct(OHm);
447 reactionData->AddProduct(OHm);
448 reactionData->AddProduct(H2);
449 theReactionTable->SetReaction(reactionData);
450 //------------------------------------------------------------------
451 // e_aq + *OH -> OH-
452 reactionData = new G4DNAMolecularReactionData(
453 2.95e10 * (1e-3 * m3 / (mole * s)), e_aq, OH);
454 reactionData->AddProduct(OHm);
455 theReactionTable->SetReaction(reactionData);
456 //------------------------------------------------------------------
457 // e_aq + H* + H2O -> H2 + OH-
458 reactionData = new G4DNAMolecularReactionData(
459 2.50e10 * (1e-3 * m3 / (mole * s)), e_aq, H);
460 reactionData->AddProduct(OHm);
461 reactionData->AddProduct(H2);
462 theReactionTable->SetReaction(reactionData);
463 //------------------------------------------------------------------
464 // e_aq + H3O+ -> H* + H2O
465 reactionData = new G4DNAMolecularReactionData(
466 2.11e10 * (1e-3 * m3 / (mole * s)), e_aq, H3Op);
467 reactionData->AddProduct(H);
468 theReactionTable->SetReaction(reactionData);
469 //------------------------------------------------------------------
470 // e_aq + H2O2 -> OH- + *OH
471 reactionData = new G4DNAMolecularReactionData(
472 1.10e10 * (1e-3 * m3 / (mole * s)), e_aq, H2O2);
473 reactionData->AddProduct(OHm);
474 reactionData->AddProduct(OH);
475 theReactionTable->SetReaction(reactionData);
476 //------------------------------------------------------------------
477 // *OH + *OH -> H2O2
478 reactionData = new G4DNAMolecularReactionData(
479 0.55e10 * (1e-3 * m3 / (mole * s)), OH, OH);
480 reactionData->AddProduct(H2O2);
481 theReactionTable->SetReaction(reactionData);
482 //------------------------------------------------------------------
483 // *OH + *H -> H2O
484 theReactionTable->SetReaction(1.55e10 * (1e-3 * m3 / (mole * s)), OH, H);
485 //------------------------------------------------------------------
486 // *H + *H -> H2
487 reactionData = new G4DNAMolecularReactionData(
488 0.503e10 * (1e-3 * m3 / (mole * s)), H, H);
489 reactionData->AddProduct(H2);
490 theReactionTable->SetReaction(reactionData);
491 //------------------------------------------------------------------
492 // H3O+ + OH- -> 2H2O
493 theReactionTable->SetReaction(1.13e11 * (1e-3 * m3 / (mole * s)), H3Op, OHm);
494 //------------------------------------------------------------------
495}
496
497//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
498
500{
502
503 //===============================================================
504 // Extend vibrational to low energy
505 // Anyway, solvation of electrons is taken into account from 7.4 eV
506 // So below this threshold, for now, no accurate modeling is done
507 //
508 G4VProcess* process =
510 FindProcess("e-_G4DNAVibExcitation", "e-");
511
512 if (process)
513 {
514 G4DNAVibExcitation* vibExcitation = (G4DNAVibExcitation*) process;
515 G4VEmModel* model = vibExcitation->EmModel();
516 G4DNASancheExcitationModel* sancheExcitationMod =
517 dynamic_cast<G4DNASancheExcitationModel*>(model);
518 if(sancheExcitationMod)
519 {
520 sancheExcitationMod->ExtendLowEnergyLimit(0.025 * eV);
521 }
522 }
523
524 //===============================================================
525 // *** Electron Solvatation ***
526 //
527 process =
529 FindProcess("e-_G4DNAElectronSolvation", "e-");
530
531 if (process == 0)
532 {
533 ph->RegisterProcess(
534 new G4DNAElectronSolvation("e-_G4DNAElectronSolvation"),
536 }
537
538 //===============================================================
539 // Define processes for molecules
540 //
541 G4MoleculeTable* theMoleculeTable = G4MoleculeTable::Instance();
543 theMoleculeTable->GetDefintionIterator();
544 iterator.reset();
545 while (iterator())
546 {
547 G4MoleculeDefinition* moleculeDef = iterator.value();
548
549 if (moleculeDef != G4H2O::Definition())
550 {
551 // G4cout << "Brownian motion added for : "
552 // << moleculeDef->GetName() << G4endl;
554 // brown->SetVerboseLevel(4);
555 ph->RegisterProcess(brown, moleculeDef);
556 }
557 else
558 {
559 moleculeDef->GetProcessManager()
561 G4DNAMolecularDissociation* dissociationProcess =
562 new G4DNAMolecularDissociation("H2O_DNAMolecularDecay");
563 dissociationProcess->SetDisplacer(
564 moleculeDef, new G4DNAWaterDissociationDisplacer);
565 dissociationProcess->SetVerboseLevel(1);
566// ph->RegisterProcess(dissociationProcess, moleculeDef);
567
568 moleculeDef->GetProcessManager()
569 ->AddRestProcess(dissociationProcess, 1);
570 }
571 /*
572 * Warning : end of particles and processes are needed by
573 * EM Physics builders
574 */
575 }
576
578}
579
580//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
581
583 reactionTable)
584{
585
586 //=========================================
587 // Diffusion controlled reaction model
588 //=========================================
594 G4VDNAReactionModel* reactionRadiusComputer =
596 reactionTable->PrintTable(reactionRadiusComputer);
597
605 stepByStep->SetReactionModel(reactionRadiusComputer);
606// ((G4DNAMoleculeEncounterStepper*) stepByStep->GetTimeStepper())->
607// SetVerbose(5);
608
609 RegisterTimeStepModel(stepByStep, 0);
610}
G4_DECLARE_PHYSCONSTR_FACTORY(G4EmDNAChemistry_option1)
static constexpr double mole
Definition: G4SIunits.hh:279
static constexpr double s
Definition: G4SIunits.hh:154
static constexpr double m3
Definition: G4SIunits.hh:111
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double g
Definition: G4SIunits.hh:168
static constexpr double m2
Definition: G4SIunits.hh:110
static G4DNAChemistryManager * Instance()
void SetChemistryList(G4VUserChemistryList &)
void SetDisplacer(Species *, Displacer *)
void PrintTable(G4VDNAReactionModel *=0)
void SetReaction(G4double observedReactionRate, Reactant *reactive1, Reactant *reactive2)
void SetReactionModel(G4VDNAReactionModel *)
G4int AddElectron(G4int orbit, G4int number=1)
G4int RemoveElectron(G4int orbit, G4int number=1)
static G4Electron_aq * Definition()
static G4Electron * Definition()
Definition: G4Electron.cc:48
virtual void ConstructReactionTable(G4DNAMolecularReactionTable *reactionTable)
virtual void ConstructTimeStepModel(G4DNAMolecularReactionTable *reactionTable)
static G4H2O2 * Definition()
Definition: G4H2O2.cc:45
static G4H2O * Definition()
Definition: G4H2O.cc:42
static G4H2 * Definition()
Definition: G4H2.cc:45
static G4H3O * Definition()
Definition: G4H3O.cc:46
static G4Hydrogen * Definition()
Definition: G4Hydrogen.cc:45
void AddProduct(Product *, G4double displacement=0.)
const G4ElectronOccupancy * GetGroundStateElectronOccupancy() const
void AddDecayChannel(const G4MolecularConfiguration *molConf, const G4MolecularDissociationChannel *channel)
G4MolecularConfiguration * NewConfiguration(const G4String &excitedStateLabel)
G4MolecularConfiguration * NewConfigurationWithElectronOccupancy(const G4String &excitedStateLabel, const G4ElectronOccupancy &, double decayTime=0.)
G4MolecularConfiguration * GetConfiguration(const G4String &, bool mustExist=true)
G4MolecularConfiguration * CreateConfiguration(const G4String &userIdentifier, const G4MoleculeDefinition *molDef, const G4String &configurationLabel, const G4ElectronOccupancy &eOcc)
G4MoleculeDefinitionIterator GetDefintionIterator()
static G4MoleculeTable * Instance()
static G4OH * Definition()
Definition: G4OH.cc:45
G4ProcessManager * GetProcessManager() const
G4bool RegisterProcess(G4VProcess *process, G4ParticleDefinition *particle)
static G4PhysicsListHelper * GetPhysicsListHelper()
G4int AddRestProcess(G4VProcess *aProcess, G4int ord=ordDefault)
static G4ProcessTable * GetProcessTable()
G4VEmModel * EmModel(size_t index=0) const
void SetVerboseLevel(G4int value)
Definition: G4VProcess.hh:412
void RegisterTimeStepModel(G4VITStepModel *timeStepModel, double startingTime=0)
float Avogadro
Definition: hepunit.py:252
float c_squared
Definition: hepunit.py:257