Geant4-11
G4EmDNAChemistry.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26#include "G4EmDNAChemistry.hh"
27
29#include "G4SystemOfUnits.hh"
30
34#include "G4ProcessManager.hh"
35
37
38// *** Processes and models for Geant4-DNA
39
41
42#include "G4DNAAttachment.hh"
43#include "G4DNAVibExcitation.hh"
44
45#include "G4DNAElastic.hh"
49
56
58
59// particles
60
61#include "G4Electron.hh"
62#include "G4Proton.hh"
63#include "G4GenericIon.hh"
64
65#include "G4MoleculeTable.hh"
66#include "G4H2O.hh"
67#include "G4H2.hh"
68#include "G4Hydrogen.hh"
69#include "G4OH.hh"
70#include "G4H3O.hh"
71#include "G4Electron_aq.hh"
72#include "G4H2O2.hh"
73
75#include "G4BuilderType.hh"
76
77/****/
79#include "G4ProcessVector.hh"
80#include "G4ProcessTable.hh"
83/****/
84
85// factory
87
89
90#include "G4Threading.hh"
91
94{
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
99
101{
102}
103
104//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105
107{
108 //-----------------------------------
109 G4Electron::Definition(); // safety
110
111 //-----------------------------------
112 // Create the definition
120
121 //____________________________________________________________________________
122
125 CreateConfiguration("OHm", // just a tag to store and retrieve from
126 // G4MoleculeTable
128 -1, // charge
129 5.0e-9 * (m2 / s));
130 OHm->SetMass(17.0079 * g / Avogadro * c_squared);
138}
139
140//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
141
143{
144 //-----------------------------------
145 //Get the molecular configuration
158
159 //-------------------------------------
160 //Define the decay channels
164
167
169 // EXCITATIONS //
171 G4DNAWaterExcitationStructure waterExcitation;
172 //--------------------------------------------------------
173 //---------------Excitation on the fifth layer------------
174
175 decCh1 = new G4MolecularDissociationChannel("A^1B_1_Relaxation");
176 decCh2 = new G4MolecularDissociationChannel("A^1B_1_DissociativeDecay");
177 //Decay 1 : OH + H
178 decCh1->SetEnergy(waterExcitation.ExcitationEnergy(0));
179 decCh1->SetProbability(0.35);
180 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::NoDisplacement);
181
182 decCh2->AddProduct(OH);
183 decCh2->AddProduct(H);
184 decCh2->SetProbability(0.65);
185 decCh2->SetDisplacementType(
186 G4DNAWaterDissociationDisplacer::A1B1_DissociationDecay);
187
188// water->AddExcitedState("A^1B_1");
189 occ->RemoveElectron(4, 1); // this is the transition form ground state to
190 occ->AddElectron(5, 1); // the first unoccupied orbital: A^1B_1
191
192 water->NewConfigurationWithElectronOccupancy("A^1B_1", *occ);
193 water->AddDecayChannel("A^1B_1", decCh1);
194 water->AddDecayChannel("A^1B_1", decCh2);
195
196 //--------------------------------------------------------
197 //---------------Excitation on the fourth layer-----------
198 decCh1 = new G4MolecularDissociationChannel("B^1A_1_Relaxation_Channel");
199 decCh2 = new G4MolecularDissociationChannel("B^1A_1_DissociativeDecay");
201 "B^1A_1_AutoIonisation_Channel");
202
203 //Decay 1 : energy
204 decCh1->SetEnergy(waterExcitation.ExcitationEnergy(1));
205 decCh1->SetProbability(0.3);
206
207 //Decay 2 : 2OH + H_2
208 decCh2->AddProduct(H2);
209 decCh2->AddProduct(OH);
210 decCh2->AddProduct(OH);
211 decCh2->SetProbability(0.15);
212 decCh2->SetDisplacementType(
213 G4DNAWaterDissociationDisplacer::B1A1_DissociationDecay);
214
215 //Decay 3 : OH + H_3Op + e_aq
216 decCh3->AddProduct(OH);
217 decCh3->AddProduct(H3O);
218 decCh3->AddProduct(e_aq);
219 decCh3->SetProbability(0.55);
220 decCh3->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
221
222 *occ = *(water->GetGroundStateElectronOccupancy());
223 occ->RemoveElectron(3); // this is the transition form ground state to
224 occ->AddElectron(5, 1); // the first unoccupied orbital: B^1A_1
225
226 water->NewConfigurationWithElectronOccupancy("B^1A_1", *occ);
227 water->AddDecayChannel("B^1A_1", decCh1);
228 water->AddDecayChannel("B^1A_1", decCh2);
229 water->AddDecayChannel("B^1A_1", decCh3);
230
231 //-------------------------------------------------------
232 //-------------------Excitation of 3rd layer-----------------
234 "Excitation3rdLayer_AutoIonisation_Channel");
236 "Excitation3rdLayer_Relaxation_Channel");
237
238 //Decay channel 1 : : OH + H_3Op + e_aq
239 decCh1->AddProduct(OH);
240 decCh1->AddProduct(H3O);
241 decCh1->AddProduct(e_aq);
242
243 decCh1->SetProbability(0.5);
244 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
245
246 //Decay channel 2 : energy
247 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(2));
248 decCh2->SetProbability(0.5);
249
250 //Electronic configuration of this decay
251 *occ = *(water->GetGroundStateElectronOccupancy());
252 occ->RemoveElectron(2, 1);
253 occ->AddElectron(5, 1);
254
255 //Configure the water molecule
256 water->NewConfigurationWithElectronOccupancy("Excitation3rdLayer", *occ);
257 water->AddDecayChannel("Excitation3rdLayer", decCh1);
258 water->AddDecayChannel("Excitation3rdLayer", decCh2);
259
260 //-------------------------------------------------------
261 //-------------------Excitation of 2nd layer-----------------
263 "Excitation2ndLayer_AutoIonisation_Channel");
265 "Excitation2ndLayer_Relaxation_Channel");
266
267 //Decay Channel 1 : : OH + H_3Op + e_aq
268 decCh1->AddProduct(OH);
269 decCh1->AddProduct(H3O);
270 decCh1->AddProduct(e_aq);
271
272 decCh1->SetProbability(0.5);
273 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
274
275 //Decay channel 2 : energy
276 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(3));
277 decCh2->SetProbability(0.5);
278
279 *occ = *(water->GetGroundStateElectronOccupancy());
280 occ->RemoveElectron(1, 1);
281 occ->AddElectron(5, 1);
282
283 water->NewConfigurationWithElectronOccupancy("Excitation2ndLayer", *occ);
284 water->AddDecayChannel("Excitation2ndLayer", decCh1);
285 water->AddDecayChannel("Excitation2ndLayer", decCh2);
286
287 //-------------------------------------------------------
288 //-------------------Excitation of 1st layer-----------------
290 "Excitation1stLayer_AutoIonisation_Channel");
292 "Excitation1stLayer_Relaxation_Channel");
293
294 *occ = *(water->GetGroundStateElectronOccupancy());
295 occ->RemoveElectron(0, 1);
296 occ->AddElectron(5, 1);
297
298 //Decay Channel 1 : : OH + H_3Op + e_aq
299 decCh1->AddProduct(OH);
300 decCh1->AddProduct(H3O);
301 decCh1->AddProduct(e_aq);
302 decCh1->SetProbability(0.5);
303 decCh1->SetDisplacementType(G4DNAWaterDissociationDisplacer::AutoIonisation);
304
305 //Decay channel 2 : energy
306 decCh2->SetEnergy(waterExcitation.ExcitationEnergy(4));
307 decCh2->SetProbability(0.5);
308
309 water->NewConfigurationWithElectronOccupancy("Excitation1stLayer", *occ);
310 water->AddDecayChannel("Excitation1stLayer", decCh1);
311 water->AddDecayChannel("Excitation1stLayer", decCh2);
312
314 // IONISATION //
316 //--------------------------------------------------------
317 //------------------- Ionisation -------------------------
318
319 decCh1 = new G4MolecularDissociationChannel("Ionisation_Channel");
320
321 //Decay Channel 1 : : OH + H_3Op
322 decCh1->AddProduct(H3O);
323 decCh1->AddProduct(OH);
324 decCh1->SetProbability(1);
325 decCh1->SetDisplacementType(
326 G4DNAWaterDissociationDisplacer::Ionisation_DissociationDecay);
327
328 *occ = *(water->GetGroundStateElectronOccupancy());
329 occ->RemoveElectron(4, 1);
330 // this is a ionized h2O with a hole in its last orbital
331 water->NewConfigurationWithElectronOccupancy("Ionisation5", *occ);
332 water->AddDecayChannel("Ionisation5",
333 decCh1);
334
335 *occ = *(water->GetGroundStateElectronOccupancy());
336 occ->RemoveElectron(3, 1);
337 water->NewConfigurationWithElectronOccupancy("Ionisation4", *occ);
338 water->AddDecayChannel("Ionisation4",
339 new G4MolecularDissociationChannel(*decCh1));
340
341 *occ = *(water->GetGroundStateElectronOccupancy());
342 occ->RemoveElectron(2, 1);
343 water->NewConfigurationWithElectronOccupancy("Ionisation3", *occ);
344 water->AddDecayChannel("Ionisation3",
345 new G4MolecularDissociationChannel(*decCh1));
346
347 *occ = *(water->GetGroundStateElectronOccupancy());
348 occ->RemoveElectron(1, 1);
349 water->NewConfigurationWithElectronOccupancy("Ionisation2", *occ);
350 water->AddDecayChannel("Ionisation2",
351 new G4MolecularDissociationChannel(*decCh1));
352
353 *occ = *(water->GetGroundStateElectronOccupancy());
354 occ->RemoveElectron(0, 1);
355 water->NewConfigurationWithElectronOccupancy("Ionisation1", *occ);
356 water->AddDecayChannel("Ionisation1",
357 new G4MolecularDissociationChannel(*decCh1));
358
360 // Dissociative Attachment //
362 decCh1 = new G4MolecularDissociationChannel("DissociativeAttachment");
363
364 //Decay 1 : 2OH + H_2
365 decCh1->AddProduct(H2);
366 decCh1->AddProduct(OHm);
367 decCh1->AddProduct(OH);
368 decCh1->SetProbability(1);
370 DissociativeAttachment);
371
372 *occ = *(water->GetGroundStateElectronOccupancy());
373 occ->AddElectron(5, 1); // H_2O^-
374 water->NewConfigurationWithElectronOccupancy("DissociativeAttachment", *occ);
375 water->AddDecayChannel("DissociativeAttachment", decCh1);
376
378 // Electron-hole recombination //
380 decCh1 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay1");
381 decCh2 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay2");
382 decCh3 = new G4MolecularDissociationChannel("H2Ovib_DissociationDecay3");
383
384 //Decay 1 : 2OH + H_2
385 decCh1->AddProduct(H2);
386 decCh1->AddProduct(OH);
387 decCh1->AddProduct(OH);
388 decCh1->SetProbability(0.15);
390 B1A1_DissociationDecay);
391
392 //Decay 2 : OH + H
393 decCh2->AddProduct(OH);
394 decCh2->AddProduct(H);
395 decCh2->SetProbability(0.55);
397 A1B1_DissociationDecay);
398
399 //Decay 3 : relaxation
400 decCh3->SetProbability(0.30);
401
402 const auto pH2Ovib = G4H2O::Definition()->NewConfiguration("H2Ovib");
403 assert(pH2Ovib != nullptr);
404
405 water->AddDecayChannel(pH2Ovib, decCh1);
406 water->AddDecayChannel(pH2Ovib, decCh2);
407 water->AddDecayChannel(pH2Ovib, decCh3);
408
409 delete occ;
410}
411
412//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
413
415 theReactionTable)
416{
417 //-----------------------------------
418 //Get the molecular configuration
433
434 //------------------------------------------------------------------
435 // e_aq + e_aq + 2H2O -> H2 + 2OH-
436 G4DNAMolecularReactionData* reactionData =
437 new G4DNAMolecularReactionData(0.5e10 * (1e-3 * m3 / (mole * s)), e_aq, e_aq);
438 reactionData->AddProduct(OHm);
439 reactionData->AddProduct(OHm);
440 reactionData->AddProduct(H2);
441 theReactionTable->SetReaction(reactionData);
442 //------------------------------------------------------------------
443 // e_aq + *OH -> OH-
444 reactionData = new G4DNAMolecularReactionData(
445 2.95e10 * (1e-3 * m3 / (mole * s)), e_aq, OH);
446 reactionData->AddProduct(OHm);
447 theReactionTable->SetReaction(reactionData);
448 //------------------------------------------------------------------
449 // e_aq + H* + H2O -> H2 + OH-
450 reactionData = new G4DNAMolecularReactionData(
451 2.65e10 * (1e-3 * m3 / (mole * s)), e_aq, H);
452 reactionData->AddProduct(OHm);
453 reactionData->AddProduct(H2);
454 theReactionTable->SetReaction(reactionData);
455 //------------------------------------------------------------------
456 // e_aq + H3O+ -> H* + H2O
457 reactionData = new G4DNAMolecularReactionData(
458 2.11e10 * (1e-3 * m3 / (mole * s)), e_aq, H3Op);
459 reactionData->AddProduct(H);
460 theReactionTable->SetReaction(reactionData);
461 //------------------------------------------------------------------
462 // e_aq + H2O2 -> OH- + *OH
463 reactionData = new G4DNAMolecularReactionData(
464 1.41e10 * (1e-3 * m3 / (mole * s)), e_aq, H2O2);
465 reactionData->AddProduct(OHm);
466 reactionData->AddProduct(OH);
467 theReactionTable->SetReaction(reactionData);
468 //------------------------------------------------------------------
469 // *OH + *OH -> H2O2
470 reactionData = new G4DNAMolecularReactionData(
471 0.44e10 * (1e-3 * m3 / (mole * s)), OH, OH);
472 reactionData->AddProduct(H2O2);
473 theReactionTable->SetReaction(reactionData);
474 //------------------------------------------------------------------
475 // *OH + *H -> H2O
476 theReactionTable->SetReaction(1.44e10 * (1e-3 * m3 / (mole * s)), OH, H);
477 //------------------------------------------------------------------
478 // *H + *H -> H2
479 reactionData = new G4DNAMolecularReactionData(
480 1.20e10 * (1e-3 * m3 / (mole * s)), H, H);
481 reactionData->AddProduct(H2);
482 theReactionTable->SetReaction(reactionData);
483 //------------------------------------------------------------------
484 // H3O+ + OH- -> 2H2O
485 theReactionTable->SetReaction(1.43e11 * (1e-3 * m3 / (mole * s)), H3Op, OHm);
486 //------------------------------------------------------------------
487}
488
489//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
490
492{
493 auto pPhysicsListHelper = G4PhysicsListHelper::GetPhysicsListHelper();
494
495 //===============================================================
496 // Extend vibrational to low energy
497 // Anyway, solvation of electrons is taken into account from 7.4 eV
498 // So below this threshold, for now, no accurate modeling is done
499 //
501 FindProcess("e-_G4DNAVibExcitation", "e-");
502
503 if (pProcess != nullptr)
504 {
505 G4DNAVibExcitation* pVibExcitation = (G4DNAVibExcitation*) pProcess;
506 G4VEmModel* pModel = pVibExcitation->EmModel();
507 G4DNASancheExcitationModel* pSancheExcitationMod =
508 dynamic_cast<G4DNASancheExcitationModel*>(pModel);
509 if(pSancheExcitationMod != nullptr)
510 {
511 pSancheExcitationMod->ExtendLowEnergyLimit(0.025 * eV);
512 }
513 }
514
515 //===============================================================
516 // Electron Solvatation
517 //
518 pProcess = G4ProcessTable::GetProcessTable()->FindProcess("e-_G4DNAElectronSolvation", "e-");
519
520 if (pProcess == nullptr)
521 {
522 pPhysicsListHelper->RegisterProcess(new G4DNAElectronSolvation("e-_G4DNAElectronSolvation"),
524 }
525
526 //===============================================================
527 // Define processes for molecules
528 //
529 G4MoleculeTable* pMoleculeTable = G4MoleculeTable::Instance();
530 G4MoleculeDefinitionIterator iterator = pMoleculeTable->GetDefintionIterator();
531 iterator.reset();
532 while (iterator())
533 {
534 G4MoleculeDefinition* pMoleculeDef = iterator.value();
535
536 if (pMoleculeDef != G4H2O::Definition())
537 {
539 pPhysicsListHelper->RegisterProcess(pBrownianTransport, pMoleculeDef);
540 }
541 else
542 {
544 G4DNAMolecularDissociation* pDissociationProcess = new G4DNAMolecularDissociation("H2O_DNAMolecularDecay");
545 pDissociationProcess->SetDisplacer(pMoleculeDef, new G4DNAWaterDissociationDisplacer);
546 pDissociationProcess->SetVerboseLevel(1);
547
548 pMoleculeDef->GetProcessManager()->AddRestProcess(pDissociationProcess, 1);
549 }
550 }
551
553}
554
555//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
556
558 reactionTable)
559{
560 G4VDNAReactionModel* reactionRadiusComputer = new G4DNASmoluchowskiReactionModel();
561 reactionTable->PrintTable(reactionRadiusComputer);
562
564 stepByStep->SetReactionModel(reactionRadiusComputer);
565// ((G4DNAMoleculeEncounterStepper*) stepByStep->GetTimeStepper())->
566// SetVerbose(5);
567
568 RegisterTimeStepModel(stepByStep, 0);
569}
G4_DECLARE_PHYSCONSTR_FACTORY(G4EmDNAChemistry)
static constexpr double mole
Definition: G4SIunits.hh:279
static constexpr double s
Definition: G4SIunits.hh:154
static constexpr double m3
Definition: G4SIunits.hh:111
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double g
Definition: G4SIunits.hh:168
static constexpr double m2
Definition: G4SIunits.hh:110
static G4DNAChemistryManager * Instance()
void SetChemistryList(G4VUserChemistryList &)
void SetDisplacer(Species *, Displacer *)
void PrintTable(G4VDNAReactionModel *=0)
void SetReaction(G4double observedReactionRate, Reactant *reactive1, Reactant *reactive2)
void SetReactionModel(G4VDNAReactionModel *)
G4int AddElectron(G4int orbit, G4int number=1)
G4int RemoveElectron(G4int orbit, G4int number=1)
static G4Electron_aq * Definition()
static G4Electron * Definition()
Definition: G4Electron.cc:48
virtual ~G4EmDNAChemistry()
virtual void ConstructMolecule()
virtual void ConstructProcess()
virtual void ConstructTimeStepModel(G4DNAMolecularReactionTable *reactionTable)
virtual void ConstructReactionTable(G4DNAMolecularReactionTable *reactionTable)
virtual void ConstructDissociationChannels()
static G4H2O2 * Definition()
Definition: G4H2O2.cc:45
static G4H2O * Definition()
Definition: G4H2O.cc:42
static G4H2 * Definition()
Definition: G4H2.cc:45
static G4H3O * Definition()
Definition: G4H3O.cc:46
static G4Hydrogen * Definition()
Definition: G4Hydrogen.cc:45
void AddProduct(Product *, G4double displacement=0.)
const G4ElectronOccupancy * GetGroundStateElectronOccupancy() const
void AddDecayChannel(const G4MolecularConfiguration *molConf, const G4MolecularDissociationChannel *channel)
G4MolecularConfiguration * NewConfiguration(const G4String &excitedStateLabel)
G4MolecularConfiguration * NewConfigurationWithElectronOccupancy(const G4String &excitedStateLabel, const G4ElectronOccupancy &, double decayTime=0.)
G4MolecularConfiguration * GetConfiguration(const G4String &, bool mustExist=true)
G4MolecularConfiguration * CreateConfiguration(const G4String &userIdentifier, const G4MoleculeDefinition *molDef, const G4String &configurationLabel, const G4ElectronOccupancy &eOcc)
G4MoleculeDefinitionIterator GetDefintionIterator()
static G4MoleculeTable * Instance()
static G4OH * Definition()
Definition: G4OH.cc:45
G4ProcessManager * GetProcessManager() const
static G4PhysicsListHelper * GetPhysicsListHelper()
G4int AddRestProcess(G4VProcess *aProcess, G4int ord=ordDefault)
static G4ProcessTable * GetProcessTable()
G4VProcess * FindProcess(const G4String &processName, const G4String &particleName) const
G4VEmModel * EmModel(size_t index=0) const
void SetVerboseLevel(G4int value)
Definition: G4VProcess.hh:412
void RegisterTimeStepModel(G4VITStepModel *timeStepModel, double startingTime=0)
float Avogadro
Definition: hepunit.py:252
float c_squared
Definition: hepunit.py:257