Geant4-11
G4DiffuseElastic.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Author: V. Grichine (Vladimir,Grichine@cern.ch)
29//
30//
31// G4 Model: diffuse optical elastic scattering with 4-momentum balance
32//
33// Class Description
34// Final state production model for hadron nuclear elastic scattering;
35// Class Description - End
36//
37//
38// 24.05.07 V. Grichine, first implementation for hadron (no Coulomb) elastic scattering
39// 04.09.07 V. Grichine, implementation for Coulomb elastic scattering
40// 12.06.11 V. Grichine, new interface to G4hadronElastic
41
42#ifndef G4DiffuseElastic_h
43#define G4DiffuseElastic_h 1
44
46#include "globals.hh"
47#include "G4HadronElastic.hh"
48#include "G4HadProjectile.hh"
49#include "G4Nucleus.hh"
50
51#include "G4Pow.hh"
52
53
55class G4PhysicsTable;
57
58class G4DiffuseElastic : public G4HadronElastic // G4HadronicInteraction
59{
60public:
61
63
64 // G4DiffuseElastic(const G4ParticleDefinition* aParticle);
65
66
67
68
69
70 virtual ~G4DiffuseElastic();
71
72 virtual G4bool IsApplicable(const G4HadProjectile &/*aTrack*/,
73 G4Nucleus & /*targetNucleus*/);
74
75 void Initialise();
76
78
79 void BuildAngleTable();
80
81
82 // G4HadFinalState* ApplyYourself(const G4HadProjectile & aTrack, G4Nucleus & targetNucleus);
83
85 G4double plab,
86 G4int Z, G4int A);
87
89
90 void SetPlabLowLimit(G4double value);
91
92 void SetHEModelLowLimit(G4double value);
93
94 void SetQModelLowLimit(G4double value);
95
97
99
100 G4double SampleT(const G4ParticleDefinition* aParticle,
101 G4double p, G4double A);
102
105
107
110
112
113 G4double SampleThetaLab(const G4HadProjectile* aParticle,
114 G4double tmass, G4double A);
115
117 G4double theta,
118 G4double momentum,
119 G4double A );
120
122 G4double theta,
123 G4double momentum,
124 G4double A, G4double Z );
125
127 G4double theta,
128 G4double momentum,
129 G4double A, G4double Z );
130
132 G4double tMand,
133 G4double momentum,
134 G4double A, G4double Z );
135
137 G4double theta,
138 G4double momentum,
139 G4double A );
140
141
143 G4double theta,
144 G4double momentum,
145 G4double Z );
146
148 G4double tMand,
149 G4double momentum,
150 G4double A, G4double Z );
151
153 G4double momentum, G4double Z );
154
156 G4double momentum, G4double Z,
157 G4double theta1, G4double theta2 );
158
159
161 G4double momentum );
162
164
166
168
170 G4double tmass, G4double thetaCMS);
171
173 G4double tmass, G4double thetaLab);
174
175 void TestAngleTable(const G4ParticleDefinition* theParticle, G4double partMom,
177
178
179
184
189
190
192
193private:
194
195
200
203
209
212
215 std::vector<G4PhysicsTable*> fAngleBank;
216
217 std::vector<G4double> fElementNumberVector;
218 std::vector<G4String> fElementNameVector;
219
229
230};
231
233 G4Nucleus & nucleus)
234{
235 if( ( projectile.GetDefinition() == G4Proton::Proton() ||
236 projectile.GetDefinition() == G4Neutron::Neutron() ||
237 projectile.GetDefinition() == G4PionPlus::PionPlus() ||
238 projectile.GetDefinition() == G4PionMinus::PionMinus() ||
239 projectile.GetDefinition() == G4KaonPlus::KaonPlus() ||
240 projectile.GetDefinition() == G4KaonMinus::KaonMinus() ) &&
241
242 nucleus.GetZ_asInt() >= 2 ) return true;
243 else return false;
244}
245
247{
248 lowEnergyRecoilLimit = value;
249}
250
252{
253 plabLowLimit = value;
254}
255
257{
258 lowEnergyLimitHE = value;
259}
260
262{
263 lowEnergyLimitQ = value;
264}
265
267{
268 lowestEnergyLimit = value;
269}
270
271
273//
274// Bessel J0 function based on rational approximation from
275// J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141
276
278{
279 G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
280
281 modvalue = std::fabs(value);
282
283 if ( value < 8.0 && value > -8.0 )
284 {
285 value2 = value*value;
286
287 fact1 = 57568490574.0 + value2*(-13362590354.0
288 + value2*( 651619640.7
289 + value2*(-11214424.18
290 + value2*( 77392.33017
291 + value2*(-184.9052456 ) ) ) ) );
292
293 fact2 = 57568490411.0 + value2*( 1029532985.0
294 + value2*( 9494680.718
295 + value2*(59272.64853
296 + value2*(267.8532712
297 + value2*1.0 ) ) ) );
298
299 bessel = fact1/fact2;
300 }
301 else
302 {
303 arg = 8.0/modvalue;
304
305 value2 = arg*arg;
306
307 shift = modvalue-0.785398164;
308
309 fact1 = 1.0 + value2*(-0.1098628627e-2
310 + value2*(0.2734510407e-4
311 + value2*(-0.2073370639e-5
312 + value2*0.2093887211e-6 ) ) );
313
314 fact2 = -0.1562499995e-1 + value2*(0.1430488765e-3
315 + value2*(-0.6911147651e-5
316 + value2*(0.7621095161e-6
317 - value2*0.934945152e-7 ) ) );
318
319 bessel = std::sqrt(0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2 );
320 }
321 return bessel;
322}
323
325//
326// Bessel J1 function based on rational approximation from
327// J.F. Hart, Computer Approximations, New York, Willey 1968, p. 141
328
330{
331 G4double modvalue, value2, fact1, fact2, arg, shift, bessel;
332
333 modvalue = std::fabs(value);
334
335 if ( modvalue < 8.0 )
336 {
337 value2 = value*value;
338
339 fact1 = value*(72362614232.0 + value2*(-7895059235.0
340 + value2*( 242396853.1
341 + value2*(-2972611.439
342 + value2*( 15704.48260
343 + value2*(-30.16036606 ) ) ) ) ) );
344
345 fact2 = 144725228442.0 + value2*(2300535178.0
346 + value2*(18583304.74
347 + value2*(99447.43394
348 + value2*(376.9991397
349 + value2*1.0 ) ) ) );
350 bessel = fact1/fact2;
351 }
352 else
353 {
354 arg = 8.0/modvalue;
355
356 value2 = arg*arg;
357
358 shift = modvalue - 2.356194491;
359
360 fact1 = 1.0 + value2*( 0.183105e-2
361 + value2*(-0.3516396496e-4
362 + value2*(0.2457520174e-5
363 + value2*(-0.240337019e-6 ) ) ) );
364
365 fact2 = 0.04687499995 + value2*(-0.2002690873e-3
366 + value2*( 0.8449199096e-5
367 + value2*(-0.88228987e-6
368 + value2*0.105787412e-6 ) ) );
369
370 bessel = std::sqrt( 0.636619772/modvalue)*(std::cos(shift)*fact1 - arg*std::sin(shift)*fact2);
371
372 if (value < 0.0) bessel = -bessel;
373 }
374 return bessel;
375}
376
378//
379// damp factor in diffraction x/sh(x), x was already *pi
380
382{
383 G4double df;
384 G4double f2 = 2., f3 = 6., f4 = 24.; // first factorials
385
386 // x *= pi;
387
388 if( std::fabs(x) < 0.01 )
389 {
390 df = 1./(1. + x/f2 + x*x/f3 + x*x*x/f4);
391 }
392 else
393 {
394 df = x/std::sinh(x);
395 }
396 return df;
397}
398
399
401//
402// return J1(x)/x with special case for small x
403
405{
406 G4double x2, result;
407
408 if( std::fabs(x) < 0.01 )
409 {
410 x *= 0.5;
411 x2 = x*x;
412 result = 2. - x2 + x2*x2/6.;
413 }
414 else
415 {
416 result = BesselJone(x)/x;
417 }
418 return result;
419}
420
422//
423// return particle beta
424
426 G4double momentum )
427{
428 G4double mass = particle->GetPDGMass();
429 G4double a = momentum/mass;
430 fBeta = a/std::sqrt(1+a*a);
431
432 return fBeta;
433}
434
436//
437// return Zommerfeld parameter for Coulomb scattering
438
440{
442
443 return fZommerfeld;
444}
445
447//
448// return Wentzel correction for Coulomb scattering
449
451{
452 G4double k = momentum/CLHEP::hbarc;
453 G4double ch = 1.13 + 3.76*n*n;
454 G4double zn = 1.77*k*(1.0/G4Pow::GetInstance()->A13(Z))*CLHEP::Bohr_radius;
455 G4double zn2 = zn*zn;
456 fAm = ch/zn2;
457
458 return fAm;
459}
460
462//
463// calculate nuclear radius for different atomic weights using different approximations
464
466{
467 G4double R, r0, a11, a12, a13, a2, a3;
468
469 a11 = 1.26; // 1.08, 1.16
470 a12 = 1.; // 1.08, 1.16
471 a13 = 1.12; // 1.08, 1.16
472 a2 = 1.1;
473 a3 = 1.;
474
475 // Special rms radii for light nucleii
476
477 if (A < 50.)
478 {
479 if (std::abs(A-1.) < 0.5) return 0.89*CLHEP::fermi; // p
480 else if(std::abs(A-2.) < 0.5) return 2.13*CLHEP::fermi; // d
481 else if( // std::abs(Z-1.) < 0.5 &&
482std::abs(A-3.) < 0.5) return 1.80*CLHEP::fermi; // t
483
484 // else if(std::abs(Z-2.) < 0.5 && std::abs(A-3.) < 0.5) return 1.96CLHEP::fermi; // He3
485 else if( // std::abs(Z-2.) < 0.5 &&
486std::abs(A-4.) < 0.5) return 1.68*CLHEP::fermi; // He4
487
488 else if( // std::abs(Z-3.) < 0.5
489 std::abs(A-7.) < 0.5 ) return 2.40*CLHEP::fermi; // Li7
490 else if( // std::abs(Z-4.) < 0.5
491std::abs(A-9.) < 0.5) return 2.51*CLHEP::fermi; // Be9
492
493 else if( 10. < A && A <= 16. ) r0 = a11*( 1 - (1.0/G4Pow::GetInstance()->A23(A)) )*CLHEP::fermi; // 1.08CLHEP::fermi;
494 else if( 15. < A && A <= 20. ) r0 = a12*( 1 - (1.0/G4Pow::GetInstance()->A23(A)) )*CLHEP::fermi;
495 else if( 20. < A && A <= 30. ) r0 = a13*( 1 - (1.0/G4Pow::GetInstance()->A23(A)) )*CLHEP::fermi;
496 else r0 = a2*CLHEP::fermi;
497
498 R = r0*G4Pow::GetInstance()->A13(A);
499 }
500 else
501 {
502 r0 = a3*CLHEP::fermi;
503
504 R = r0*G4Pow::GetInstance()->powA(A, 0.27);
505 }
506 fNuclearRadius = R;
507 return R;
508 /*
509 G4double r0;
510 if( A < 50. )
511 {
512 if( A > 10. ) r0 = 1.16*( 1 - (1.0/G4Pow::GetInstance()->A23(A)) )*CLHEP::fermi; // 1.08CLHEP::fermi;
513 else r0 = 1.1*CLHEP::fermi;
514 fNuclearRadius = r0*G4Pow::GetInstance()->A13(A);
515 }
516 else
517 {
518 r0 = 1.7*CLHEP::fermi; // 1.7*CLHEP::fermi;
519 fNuclearRadius = r0*G4Pow::GetInstance()->powA(A, 0.27); // 0.27);
520 }
521 return fNuclearRadius;
522 */
523}
524
526//
527// return Coulomb scattering differential xsc with Wentzel correction
528
530 G4double theta,
531 G4double momentum,
532 G4double Z )
533{
534 G4double sinHalfTheta = std::sin(0.5*theta);
535 G4double sinHalfTheta2 = sinHalfTheta*sinHalfTheta;
536 G4double beta = CalculateParticleBeta( particle, momentum);
537 G4double z = particle->GetPDGCharge();
539 G4double am = CalculateAm( momentum, n, Z);
540 G4double k = momentum/CLHEP::hbarc;
541 G4double ch = 0.5*n/k;
542 G4double ch2 = ch*ch;
543 G4double xsc = ch2/(sinHalfTheta2+am)/(sinHalfTheta2+am);
544
545 return xsc;
546}
547
548
550//
551// return Coulomb scattering total xsc with Wentzel correction
552
554 G4double momentum, G4double Z )
555{
556 G4double beta = CalculateParticleBeta( particle, momentum);
557 G4cout<<"beta = "<<beta<<G4endl;
558 G4double z = particle->GetPDGCharge();
560 G4cout<<"fZomerfeld = "<<n<<G4endl;
561 G4double am = CalculateAm( momentum, n, Z);
562 G4cout<<"cof Am = "<<am<<G4endl;
563 G4double k = momentum/CLHEP::hbarc;
564 G4cout<<"k = "<<k*CLHEP::fermi<<" 1/fermi"<<G4endl;
565 G4cout<<"k*Bohr_radius = "<<k*CLHEP::Bohr_radius<<G4endl;
566 G4double ch = n/k;
567 G4double ch2 = ch*ch;
568 G4double xsc = ch2*CLHEP::pi/(am +am*am);
569
570 return xsc;
571}
572
574//
575// return Coulomb scattering xsc with Wentzel correction integrated between
576// theta1 and < theta2
577
579 G4double momentum, G4double Z,
580 G4double theta1, G4double theta2 )
581{
582 G4double c1 = std::cos(theta1);
583 G4cout<<"c1 = "<<c1<<G4endl;
584 G4double c2 = std::cos(theta2);
585 G4cout<<"c2 = "<<c2<<G4endl;
586 G4double beta = CalculateParticleBeta( particle, momentum);
587 // G4cout<<"beta = "<<beta<<G4endl;
588 G4double z = particle->GetPDGCharge();
590 // G4cout<<"fZomerfeld = "<<n<<G4endl;
591 G4double am = CalculateAm( momentum, n, Z);
592 // G4cout<<"cof Am = "<<am<<G4endl;
593 G4double k = momentum/CLHEP::hbarc;
594 // G4cout<<"k = "<<k*CLHEP::fermi<<" 1/fermi"<<G4endl;
595 // G4cout<<"k*Bohr_radius = "<<k*CLHEP::Bohr_radius<<G4endl;
596 G4double ch = n/k;
597 G4double ch2 = ch*ch;
598 am *= 2.;
599 G4double xsc = ch2*CLHEP::twopi*(c1-c2);
600 xsc /= (1 - c1 + am)*(1 - c2 + am);
601
602 return xsc;
603}
604
605#endif
static const G4double alpha
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double SampleThetaLab(const G4HadProjectile *aParticle, G4double tmass, G4double A)
G4ParticleDefinition * theProton
G4ParticleDefinition * theNeutron
G4double GetDiffElasticSumProbA(G4double alpha)
G4double BesselOneByArg(G4double z)
G4double GetCoulombElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double Z)
G4double CalculateAm(G4double momentum, G4double n, G4double Z)
G4double ThetaCMStoThetaLab(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaCMS)
std::vector< G4double > fElementNumberVector
G4ParticleDefinition * theDeuteron
const G4ParticleDefinition * thePionMinus
G4double GetCoulombTotalXsc(const G4ParticleDefinition *particle, G4double momentum, G4double Z)
G4ParticleDefinition * theAlpha
G4double lowEnergyRecoilLimit
G4PhysicsLogVector * fEnergyVector
G4double GetInvElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double GetInvCoulombElasticXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
const G4ParticleDefinition * fParticle
void TestAngleTable(const G4ParticleDefinition *theParticle, G4double partMom, G4double Z, G4double A)
const G4ParticleDefinition * thePionPlus
G4double ThetaLabToThetaCMS(const G4DynamicParticle *aParticle, G4double tmass, G4double thetaLab)
G4double GetNuclearRadius()
G4double BesselJzero(G4double z)
G4double SampleThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4PhysicsTable * fAngleTable
G4double GetCoulombIntegralXsc(const G4ParticleDefinition *particle, G4double momentum, G4double Z, G4double theta1, G4double theta2)
G4double GetIntegrandFunction(G4double theta)
void SetHEModelLowLimit(G4double value)
G4double DampFactor(G4double z)
virtual G4bool IsApplicable(const G4HadProjectile &, G4Nucleus &)
std::vector< G4String > fElementNameVector
void SetQModelLowLimit(G4double value)
G4double SampleTableThetaCMS(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
virtual G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
void SetLowestEnergyLimit(G4double value)
G4double CalculateParticleBeta(const G4ParticleDefinition *particle, G4double momentum)
G4double GetDiffuseElasticSumXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A, G4double Z)
G4double SampleT(const G4ParticleDefinition *aParticle, G4double p, G4double A)
G4double GetDiffElasticSumProb(G4double theta)
G4double GetDiffElasticProb(G4double theta)
std::vector< G4PhysicsTable * > fAngleBank
G4double IntegralElasticProb(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double CalculateZommerfeld(G4double beta, G4double Z1, G4double Z2)
G4double CalculateNuclearRad(G4double A)
virtual ~G4DiffuseElastic()
void InitialiseOnFly(G4double Z, G4double A)
void SetRecoilKinEnergyLimit(G4double value)
G4double SampleTableT(const G4ParticleDefinition *aParticle, G4double p, G4double Z, G4double A)
G4double BesselJone(G4double z)
G4double GetDiffuseElasticXsc(const G4ParticleDefinition *particle, G4double theta, G4double momentum, G4double A)
G4double GetScatteringAngle(G4int iMomentum, G4int iAngle, G4double position)
void SetPlabLowLimit(G4double value)
G4double GetInvElasticSumXsc(const G4ParticleDefinition *particle, G4double tMand, G4double momentum, G4double A, G4double Z)
G4double NeutronTuniform(G4int Z)
const G4ParticleDefinition * GetDefinition() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:112
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:112
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
G4double GetPDGCharge() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:97
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:120
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:230
G4double A23(G4double A) const
Definition: G4Pow.hh:131
static G4Proton * Proton()
Definition: G4Proton.cc:92
static constexpr double fine_structure_const
static constexpr double twopi
Definition: SystemOfUnits.h:56
static constexpr double Bohr_radius
static constexpr double hbarc
static constexpr double pi
Definition: SystemOfUnits.h:55
static constexpr double fermi
Definition: SystemOfUnits.h:84
static const G4double Z1[5]
Definition: paraMaker.cc:41