Geant4-11
G4DNAQuinnPlasmonExcitationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Created on 2016/04/08
27//
28// Authors: D. Sakata, S. Incerti
29//
30// This class perform transmission term of volume plasmon excitation,
31// based on Quinn Model, see Phys. Rev. vol 126, number 4 (1962)
32
34#include "G4SystemOfUnits.hh"
35#include "G4RandomDirection.hh"
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
45 const G4String& nam):
46G4VEmModel(nam), isInitialised(false)
47{
49 fLowEnergyLimit = 10 * eV;
50 fHighEnergyLimit = 1.0 * GeV;
51
52 for(G4int i=0;i<100;i++) nValenceElectron[i]=0;
53
54 verboseLevel = 0;
55
56 if (verboseLevel > 0)
57 {
58 G4cout << "Quinn plasmon excitation model is constructed " << G4endl;
59 }
61 statCode = false;
62}
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
65
67{
68}
69
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
71
73 (const G4ParticleDefinition* particle,
74 const G4DataVector& /*cuts*/)
75{
76 for(G4int i=0;i<100;i++) nValenceElectron[i]=0;
77
78 if (verboseLevel > 3)
79 {
80 G4cout <<
81 "Calling G4DNAQuinnPlasmonExcitationModel::Initialise()"
82 << G4endl;
83 }
84
85 if(particle == G4Electron::ElectronDefinition())
86 {
87 fLowEnergyLimit = 10 * eV;
88 fHighEnergyLimit = 1.0 * GeV;
89 }
90 else
91 {
92 G4Exception("G4DNAQuinnPlasmonExcitationModel::Initialise","em0001",
93 FatalException,"Not defined for other particles than electrons.");
94 return;
95 }
96
97 // Get Number of valence electrons
98 G4ProductionCutsTable* theCoupleTable =
100
101 G4int numOfCouples = theCoupleTable->GetTableSize();
102
103 for(G4int i=0;i<numOfCouples;i++){
104
105 const G4MaterialCutsCouple* couple =
106 theCoupleTable->GetMaterialCutsCouple(i);
107
108 const G4Material* material = couple->GetMaterial();
109
110 const G4ElementVector* theElementVector =material->GetElementVector();
111
112 G4int nelm = material->GetNumberOfElements();
113 if (nelm==1){// Protection: only for single element
114 G4int z = G4lrint((*theElementVector)[0]->GetZ());
115 if(z<=100){nValenceElectron[z] = GetNValenceElectron(z);}
116 }
117 //for(G4int j=0;j<nelm;j++){
118 // G4int z=G4lrint((*theElementVector)[j]->GetZ());
119 // if(z<=100){nValenceElectron[z] = GetNValenceElectron(z);}
120 //}
121 }
122
123 if( verboseLevel>0 )
124 {
125 G4cout << "Quinn plasmon excitation model is initialized " << G4endl
126 << "Energy range: "
127 << LowEnergyLimit() / eV << " eV - "
128 << HighEnergyLimit() / keV << " keV for "
129 << particle->GetParticleName()
130 << G4endl;
131 }
132
133 if (isInitialised){return;}
135 isInitialised = true;
136}
137
138//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
139
141 (const G4Material* material,
142 const G4ParticleDefinition* particleDefinition,
143 G4double ekin,
144 G4double,
145 G4double)
146{
147 if (verboseLevel > 3)
148 {
149 G4cout <<
150 "Calling CrossSectionPerVolume() of G4DNAQuinnPlasmonExcitationModel"
151 << G4endl;
152 }
153
154 // Protection: only for single element
155 if(material->GetNumberOfElements()>1) return 0.;
156 G4double z = material->GetZ();
157
158 // Protection: only for Gold
159 if (z!=79){return 0.;}
160
161
162 G4double sigma = 0;
163 G4double atomicNDensity = material->GetAtomicNumDensityVector()[0];
164
165 if(atomicNDensity!= 0.0)
166 {
167 if (ekin >= fLowEnergyLimit && ekin < fHighEnergyLimit)
168 {
169 sigma = GetCrossSection(material,particleDefinition,ekin);
170 }
171
172 if (verboseLevel > 2)
173 {
174 G4cout<<"__________________________________" << G4endl;
175 G4cout<<"=== G4DNAQuinnPlasmonExcitationModel - XS INFO START"<<G4endl;
176 G4cout<<"=== Kinetic energy (eV)=" << ekin/eV << " particle : "
177 <<particleDefinition->GetParticleName() << G4endl;
178 G4cout<<"=== Cross section per atom for Z="<<z<<" is (cm^2)"
179 <<sigma/cm/cm << G4endl;
180 G4cout<<"=== Cross section per atom for Z="<<z<<" is (cm^-1)="
181 <<sigma*atomicNDensity/(1./cm) << G4endl;
182 G4cout<<"=== G4DNAQuinnPlasmonExcitationModel - XS INFO END" << G4endl;
183 }
184 }
185
186 return sigma*atomicNDensity;
187}
188
189//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
190
192 (std::vector<G4DynamicParticle*>* /*fvect*/,
193 const G4MaterialCutsCouple* couple,
194 const G4DynamicParticle* aDynamicParticle,
196{
197
198 if (verboseLevel > 3)
199 {
200 G4cout <<
201 "Calling SampleSecondaries() of G4DNAQuinnPlasmonExcitationModel"
202 << G4endl;
203 }
204
205 const G4Material *material = couple->GetMaterial();
206
207 G4ParticleDefinition* particle = aDynamicParticle->GetDefinition();
208
209 G4double k = aDynamicParticle->GetKineticEnergy();
210
211 if(particle == G4Electron::ElectronDefinition())
212 {
213 G4double e = 1.;
214 G4int z = material->GetZ();
215 G4int Nve = 0;
216
217 //TODO: have to be change to realistic!!
218 if(z<100) Nve = nValenceElectron[z];
219
220 G4double A = material->GetA()/g/mole;
221 G4double Dens = material->GetDensity()/g*cm*cm*cm;
222 G4double veDens = Dens*CLHEP::Avogadro*Nve/A;
223
224 G4double omega_p = std::sqrt(veDens*std::pow(e,2)/
227
228 G4double excitationEnergy = CLHEP::hbar_Planck*omega_p;
229 G4double newEnergy = k - excitationEnergy;
230
231
232 if (newEnergy > 0)
233 {
235 ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
236
238
239 if(!statCode)
240 {
242 }
243 else
244 {
246
247 }
248 }
249 }
250}
251
252//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
253
255 (const G4Material* material,
256 const G4ParticleDefinition* particle,
257 G4double kineticEnergy)
258{
259 G4double value=0;
260
261 if(particle == G4Electron::ElectronDefinition())
262 {
263 G4double e = 1.;
264 G4int z = material->GetZ();
265 G4int Nve = 0;
266 if(z<100) Nve = nValenceElectron[z];
267 G4double A = material->GetA()/g/mole;
268 G4double Dens = material->GetDensity()/g*cm*cm*cm;
269 G4double veDens = Dens*CLHEP::Avogadro*Nve/A;
270
271 G4double omega_p = std::sqrt(veDens*std::pow(e,2)
274
275 G4double fEnergy = std::pow(CLHEP::h_Planck,2)/(8*CLHEP::electron_mass_c2)*
276 std::pow(3*veDens/CLHEP::pi,2./3.)/e
278
280 /(CLHEP::c_squared/cm/cm)*fEnergy);
281
283 /(CLHEP::c_squared/cm/cm)*kineticEnergy);
284
285 G4double mfp = 2*CLHEP::Bohr_radius/cm*kineticEnergy
286 /(CLHEP::hbar_Planck*omega_p)/
287 (G4Log((std::pow(std::pow(p0,2)
289 (CLHEP::c_squared/cm/cm)*omega_p
290 *CLHEP::hbar_Planck,1./2.)-p0)
291 /(p-std::pow(std::pow(p,2)-2*CLHEP::electron_mass_c2/
292 (CLHEP::c_squared/cm/cm)*omega_p
293 *CLHEP::hbar_Planck,1./2.))));
294
295 G4double excitationEnergy = CLHEP::hbar_Planck*omega_p;
296
297 if((0<mfp)&&(0<veDens)&&(excitationEnergy<kineticEnergy)){
298 value = 1./(veDens*mfp);
299 }
300 }
301 return value*cm*cm;
302}
303
304//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
305
307{
308
309 G4int Nve=0;
310
311 // Current limitation to gold
312 if (z!=79){return 0.;}
313
314 if (verboseLevel > 3)
315 {
316 G4cout <<
317 "Calling GetNValenceElectron() of G4DNAQuinnPlasmonExcitationModel"
318 << G4endl;
319 }
320
321 const char *datadir=0;
322
323 if(!datadir)
324 {
325 datadir = getenv("G4LEDATA");
326 if(!datadir)
327 {
328 G4Exception("G4DNAQuinnPlasmonExcitationModel::GetNValenceElectron()"
329 ,"em0002",FatalException,
330 "Enviroment variable G4LEDATA not defined");
331 return 0;
332 }
333 }
334
335 std::ostringstream targetfile;
336 targetfile.str("");
337 targetfile.clear(stringstream::goodbit);
338 targetfile << datadir <<"/dna/atomicstate_Z"<< z <<".dat";
339 std::ifstream fin(targetfile.str().c_str());
340
341 if(!fin)
342 {
343 G4cout<< " Error : "<< targetfile.str() <<" is not found "<<endl;
344 G4Exception("G4DNAQuinnPlasmonExcitationModel::GetNValenceElectron()"
345 ,"em0003",FatalException,
346 "There is no target file");
347 return 0;
348 }
349
350 string buff0,buff1,buff2,buff3,buff4,buff5,buff6;
351 fin >> buff0 >>buff1>>buff2>>buff3>>buff4>>buff5>>buff6;
352
353 while(true){
354 fin >> buff0 >>buff1>>buff2>>buff3>>buff4>>buff5>>buff6;
355 if(!fin.eof())
356 {
357 Nve = stoi(buff3);
358 }
359 else
360 {
361 break;
362 }
363 }
364 return Nve;
365}
366
std::vector< const G4Element * > G4ElementVector
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
G4double G4Log(G4double x)
Definition: G4Log.hh:226
static constexpr double mole
Definition: G4SIunits.hh:279
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double g
Definition: G4SIunits.hh:168
static constexpr double GeV
Definition: G4SIunits.hh:203
static constexpr double cm
Definition: G4SIunits.hh:99
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
virtual G4double GetCrossSection(const G4Material *material, const G4ParticleDefinition *, G4double kineticEnergy)
G4DNAQuinnPlasmonExcitationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNAQuinnPlasmonExcitationModel")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
const std::vector< G4double > * fpMaterialDensity
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
const G4Material * GetMaterial() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
const G4String & GetParticleName() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
static constexpr double electron_mass_c2
static constexpr double h_Planck
static constexpr double hbar_Planck
static constexpr double Bohr_radius
static constexpr double epsilon0
static constexpr double c_squared
static constexpr double Avogadro
static constexpr double pi
Definition: SystemOfUnits.h:55
string material
Definition: eplot.py:19
int G4lrint(double ad)
Definition: templates.hh:134