Geant4-11
G4DNABornExcitationModel2.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4SystemOfUnits.hh"
32#include "G4PhysicsTable.hh"
33#include "G4PhysicsVector.hh"
34#include "G4UnitsTable.hh"
35#include <map>
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
44 const G4String& nam) :
45G4VEmModel(nam), isInitialised(false), fTableData(0)
46{
48 fHighEnergy = 0;
49 fLowEnergy = 0;
51
52 verboseLevel = 0;
53 // Verbosity scale:
54 // 0 = nothing
55 // 1 = warning for energy non-conservation
56 // 2 = details of energy budget
57 // 3 = calculation of cross sections, file openings, sampling of atoms
58 // 4 = entering in methods
59
60 if (verboseLevel > 0)
61 {
62 G4cout << "Born excitation model is constructed " << G4endl;
63 }
66 fTotalXS = 0;
67 fTableData = 0;
68
69 // Selection of stationary mode
70
71 statCode = false;
72}
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
75
77{
78 // Cross section
79 if (fTableData)
80 delete fTableData;
81}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
86 const G4DataVector& /*cuts*/)
87{
88
89 if (verboseLevel > 3)
90 {
91 G4cout << "Calling G4DNABornExcitationModel2::Initialise()" << G4endl;
92 }
93
94 if(fParticleDefinition != 0 && fParticleDefinition != particle)
95 {
96 G4Exception("G4DNABornExcitationModel2::Initialise","em0001",
97 FatalException,"Model already initialized for another particle type.");
98 }
99
100 fParticleDefinition = particle;
101
102 std::ostringstream fullFileName;
103 char *path = std::getenv("G4LEDATA");
104
105 if(G4String(path) == "")
106 {
107 G4Exception("G4DNABornExcitationModel2::Initialise","G4LEDATA-CHECK",
108 FatalException, "G4LEDATA not defined in environment variables");
109 }
110
111 fullFileName << path;
112
113 if(particle->GetParticleName() == "e-")
114 {
115 fullFileName << "/dna/bornExcitation-e.dat";
116 fLowEnergy = 9*eV;
117 fHighEnergy = 1*MeV;
118 }
119 else if(particle->GetParticleName() == "proton")
120 {
121 fullFileName << "/dna/bornExcitation-p.dat";
122 fLowEnergy = 500. * keV;
123 fHighEnergy = 100. * MeV;
124 }
125
128
129 //G4double scaleFactor = (1.e-22 / 3.343) * m*m;
130
132 fTableData->RetrievePhysicsTable(fullFileName.str().c_str(), true);
133 /*
134 for(size_t level = 0; level<fTableData->size(); ++level)
135 {
136 //(*fTableData)(level)->ScaleVector(1,scaleFactor);
137 }
138 */
139 size_t finalBin_i = 2000;
140 G4double E_min = fLowEnergy;
141 G4double E_max = fHighEnergy;
142 fTotalXS = new G4PhysicsLogVector(E_min, E_max, finalBin_i, true);
144 G4double finalXS;
145
146 for(size_t energy_i = 0; energy_i < finalBin_i; ++energy_i)
147 {
148 energy = fTotalXS->Energy(energy_i);
149 finalXS = 0;
150
151 for(size_t level = 0; level<fTableData->size(); ++level)
152 {
153 finalXS += (*fTableData)(level)->Value(energy);
154 }
155 fTotalXS->PutValue(energy_i, finalXS);
156 //G4cout << "energy = " << energy << " " << fTotalXS->Value(energy)
157 // << " " << energy_i << " " << finalXS << G4endl;
158 }
159
160 // for(energy = LowEnergyLimit() ; energy < HighEnergyLimit() ; energy += 1*pow(10,log10(energy)))
161 // {
162 // G4cout << "energy = " << energy << " " << fTotalXS->Value(energy) << G4endl;
163 // }
164
165 if( verboseLevel>0 )
166 {
167 G4cout << "Born excitation model is initialized " << G4endl
168 << "Energy range: "
169 << LowEnergyLimit() / eV << " eV - "
170 << HighEnergyLimit() / keV << " keV for "
171 << particle->GetParticleName()
172 << G4endl;
173 }
174
175 // Initialize water density pointer
177
178 if (isInitialised)
179 { return;}
181 isInitialised = true;
182}
183
184//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
185
187 const G4ParticleDefinition* particleDefinition,
188 G4double ekin,
189 G4double,
190 G4double)
191{
192 if (verboseLevel > 3)
193 {
194 G4cout << "Calling CrossSectionPerVolume() of G4DNABornExcitationModel2"
195 << G4endl;
196 }
197
198 if(particleDefinition != fParticleDefinition) return 0;
199
200 // Calculate total cross section for model
201
202 G4double sigma=0;
203
204 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
205
206 if (ekin >= fLowEnergy && ekin <= fHighEnergy)
207 {
208 sigma = fTotalXS->Value(ekin, fLastBinCallForFinalXS);
209
210 // for(size_t i = 0; i < 5; ++i)
211 // sigma += (*fTableData)[i]->Value(ekin);
212
213 if(sigma == 0)
214 {
215 G4cerr << "PROBLEM SIGMA = 0 at " << G4BestUnit(ekin, "Energy")<< G4endl;
216 }
217 }
218
219 if (verboseLevel > 2)
220 {
221 G4cout << "__________________________________" << G4endl;
222 G4cout << "G4DNABornExcitationModel2 - XS INFO START" << G4endl;
223 G4cout << "Kinetic energy(eV)=" << ekin/eV << " particle : " << particleDefinition->GetParticleName() << G4endl;
224 G4cout << "Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
225 G4cout << "Cross section per water molecule (cm^-1)=" << sigma*waterDensity/(1./cm) << G4endl;
226 G4cout << "G4DNABornExcitationModel2 - XS INFO END" << G4endl;
227 }
228
229 return sigma*waterDensity;
230}
231
232//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
233
234void G4DNABornExcitationModel2::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
235 const G4MaterialCutsCouple* /*couple*/,
236 const G4DynamicParticle* aDynamicParticle,
237 G4double,
238 G4double)
239{
240
241 if (verboseLevel > 3)
242 {
243 G4cout << "Calling SampleSecondaries() of G4DNABornExcitationModel2"
244 << G4endl;
245 }
246
247 G4double k = aDynamicParticle->GetKineticEnergy();
248
249 G4int level = RandomSelect(k);
250 G4double excitationEnergy = waterStructure.ExcitationEnergy(level);
251 G4double newEnergy = k - excitationEnergy;
252
253 if (newEnergy > 0)
254 {
256
259
261 }
262
263 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
265 level,
266 theIncomingTrack);
267}
268
269//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
270
272 G4int level,
273 const G4ParticleDefinition* particle,
274 G4double kineticEnergy)
275{
276 if (fParticleDefinition != particle)
277 {
278 G4Exception("G4DNABornExcitationModel2::GetPartialCrossSection",
279 "bornParticleType",
281 "Model initialized for another particle type.");
282 }
283
284 return (*fTableData)(level)->Value(kineticEnergy);
285}
286
287//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
288
290{
291 const size_t n(fTableData->size());
292 size_t i(n);
293
295
296 value *= G4UniformRand();
297 i = n;
298
299 G4double partialXS;
300
301 while (i > 0)
302 {
303 i--;
304
305 partialXS = (*fTableData)(i)->Value(k);
306 if (partialXS > value)
307 {
308 return i;
309 }
310 value -= partialXS;
311 }
312
313 return 0;
314}
315
@ eExcitedMolecule
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
static constexpr double keV
Definition: G4SIunits.hh:202
static constexpr double eV
Definition: G4SIunits.hh:201
static constexpr double MeV
Definition: G4SIunits.hh:200
static constexpr double cm
Definition: G4SIunits.hh:99
#define G4BestUnit(a, b)
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
G4ParticleChangeForGamma * fParticleChangeForGamma
const std::vector< G4double > * fpMolWaterDensity
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4DNABornExcitationModel2(const G4ParticleDefinition *p=0, const G4String &nam="DNABornExcitationModel")
const G4ParticleDefinition * fParticleDefinition
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
virtual G4double GetPartialCrossSection(const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
G4DNAWaterExcitationStructure waterStructure
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
const std::vector< G4double > * GetNumMolPerVolTableFor(const G4Material *) const
Retrieve a table of molecular densities (number of molecules per unit volume) in the G4 unit system f...
static G4DNAMolecularMaterial * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:686
const G4Track * GetCurrentTrack() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
G4bool RetrievePhysicsTable(const G4String &filename, G4bool ascii=false, G4bool spline=false)
void PutValue(const std::size_t index, const G4double value)
G4double Energy(const std::size_t index) const
G4double Value(const G4double energy, std::size_t &lastidx) const
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:767
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:123
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:662
virtual G4double Value(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
Definition: G4VEmModel.cc:406
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:655
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:774
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
G4double energy(const ThreeVector &p, const G4double m)
string material
Definition: eplot.py:19