Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4TripathiCrossSection Class Reference

#include <G4TripathiCrossSection.hh>

Inheritance diagram for G4TripathiCrossSection:
G4VCrossSectionDataSet

Public Member Functions

 G4TripathiCrossSection ()
 
 ~G4TripathiCrossSection ()
 
virtual G4bool IsElementApplicable (const G4DynamicParticle *aPart, G4int Z, const G4Material *)
 
virtual G4double GetElementCrossSection (const G4DynamicParticle *, G4int Z, const G4Material *)
 
- Public Member Functions inherited from G4VCrossSectionDataSet
 G4VCrossSectionDataSet (const G4String &nam="")
 
virtual ~G4VCrossSectionDataSet ()
 
virtual G4bool IsIsoApplicable (const G4DynamicParticle *, G4int Z, G4int A, const G4Element *elm=0, const G4Material *mat=0)
 
G4double GetCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
G4double ComputeCrossSection (const G4DynamicParticle *, const G4Element *, const G4Material *mat=0)
 
virtual G4double GetIsoCrossSection (const G4DynamicParticle *, G4int Z, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
 
virtual G4IsotopeSelectIsotope (const G4Element *, G4double kinEnergy)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void DumpPhysicsTable (const G4ParticleDefinition &)
 
virtual void CrossSectionDescription (std::ostream &) const
 
virtual G4int GetVerboseLevel () const
 
virtual void SetVerboseLevel (G4int value)
 
G4double GetMinKinEnergy () const
 
void SetMinKinEnergy (G4double value)
 
G4double GetMaxKinEnergy () const
 
void SetMaxKinEnergy (G4double value)
 
const G4StringGetName () const
 

Additional Inherited Members

- Protected Member Functions inherited from G4VCrossSectionDataSet
void SetName (const G4String &)
 
- Protected Attributes inherited from G4VCrossSectionDataSet
G4int verboseLevel
 

Detailed Description

Definition at line 42 of file G4TripathiCrossSection.hh.

Constructor & Destructor Documentation

G4TripathiCrossSection::G4TripathiCrossSection ( )

Definition at line 43 of file G4TripathiCrossSection.cc.

44  : G4VCrossSectionDataSet("Tripathi")
45 {}
G4VCrossSectionDataSet(const G4String &nam="")
G4TripathiCrossSection::~G4TripathiCrossSection ( )

Definition at line 47 of file G4TripathiCrossSection.cc.

48 {}

Member Function Documentation

G4double G4TripathiCrossSection::GetElementCrossSection ( const G4DynamicParticle aPart,
G4int  Z,
const G4Material  
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 63 of file G4TripathiCrossSection.cc.

References DBL_MIN, G4lrint(), G4DynamicParticle::Get4Momentum(), G4NistManager::GetAtomicMassAmu(), G4ParticleDefinition::GetBaryonNumber(), G4DynamicParticle::GetDefinition(), G4IonTable::GetIonMass(), G4ParticleTable::GetIonTable(), G4DynamicParticle::GetKineticEnergy(), G4ParticleTable::GetParticleTable(), G4ParticleDefinition::GetPDGCharge(), G4NistManager::Instance(), python.hepunit::m2, python.hepunit::MeV, and python.hepunit::pi.

65 {
66  G4double result = 0.;
67  G4double targetAtomicNumber = G4NistManager::Instance()->GetAtomicMassAmu(ZZ);
68  G4double nTargetProtons = ZZ;
69 
70  G4double kineticEnergy = aPart->GetKineticEnergy()/MeV;
71  G4double nProjProtons = aPart->GetDefinition()->GetPDGCharge();
72  G4double projectileAtomicNumber =
73  aPart->GetDefinition()->GetBaryonNumber();
74 
75  static const G4double nuleonRadius=1.1E-15;
76  static const G4double myNuleonRadius=1.36E-15;
77 
78  // needs target mass
79  G4double targetMass =
81  ->GetIonMass(G4lrint(nTargetProtons), G4lrint(targetAtomicNumber));
82  G4LorentzVector pTarget(0,0,0,targetMass);
83  G4LorentzVector pProjectile(aPart->Get4Momentum());
84  pTarget = pTarget+pProjectile;
85  G4double E_cm = (pTarget.mag()-targetMass-pProjectile.m())/MeV;
86  if(E_cm <= DBL_MIN) { return result; }
87  // done
88  G4double r_rms_p = 0.6 * myNuleonRadius *
89  std::pow(projectileAtomicNumber, 1./3.);
90  G4double r_rms_t = 0.6 * myNuleonRadius *
91  std::pow(targetAtomicNumber, 1./3.);
92 
93  // done
94  G4double r_p = 1.29*r_rms_p/nuleonRadius ;
95  G4double r_t = 1.29*r_rms_t/nuleonRadius;
96 
97  // done
98  G4double Radius = r_p + r_t +
99  1.2*(std::pow(targetAtomicNumber, 1./3.) +
100  std::pow(projectileAtomicNumber, 1./3.))/std::pow(E_cm, 1./3.);
101 
102  //done
103  G4double B = 1.44*nProjProtons*nTargetProtons/Radius;
104  if(E_cm <= B) return result;
105  // done
106  G4double Energy = kineticEnergy/projectileAtomicNumber;
107 
108  // done
109  //
110  // Note that this correction to G4TripathiCrossSection is just to accurately
111  // reflect Tripathi's algorithm. However, if you're using alpha
112  // particles/protons consider using the more accurate
113  // G4TripathiLightCrossSection, which Tripathi developed specifically for
114  // light systems.
115  //
116 
117  G4double D;
118  if (nProjProtons==1 && projectileAtomicNumber==1)
119  {
120  D = 2.05;
121  }
122  else if (nProjProtons==2 && projectileAtomicNumber==4)
123  {
124  D = 2.77-(8.0E-3*targetAtomicNumber)+
125  (1.8E-5*targetAtomicNumber*targetAtomicNumber)
126  - 0.8/(1+std::exp((250.-Energy)/75.));
127  }
128  else
129  {
130  //
131  // This is the original value used in the G4TripathiCrossSection
132  // implementation, and was used for all projectile/target conditions.
133  // I'm not touching this, although judging from Tripathi's paper, this is
134  // valid for cases where the nucleon density changes little with A.
135  //
136  D = 1.75;
137  }
138  // done
139  G4double C_E = D * (1-std::exp(-Energy/40.)) -
140  0.292*std::exp(-Energy/792.)*std::cos(0.229*std::pow(Energy, 0.453));
141 
142  // done
143  G4double S = std::pow(projectileAtomicNumber, 1./3.)*
144  std::pow(targetAtomicNumber, 1./3.)/
145  (std::pow(projectileAtomicNumber, 1./3.) +
146  std::pow(targetAtomicNumber, 1./3.));
147 
148  // done
149  G4double deltaE = 1.85*S + 0.16*S/std::pow(E_cm,1./3.) - C_E +
150  0.91*(targetAtomicNumber-2.*nTargetProtons)*nProjProtons/
151  (targetAtomicNumber*projectileAtomicNumber);
152 
153  // done
154  result = pi * nuleonRadius*nuleonRadius *
155  std::pow(( std::pow(targetAtomicNumber, 1./3.) +
156  std::pow(projectileAtomicNumber, 1./3.) + deltaE),2.) *
157  (1-B/E_cm);
158 
159  if(result < 0.) { result = 0.; }
160  return result*m2;
161 
162 }
G4double GetKineticEnergy() const
G4ParticleDefinition * GetDefinition() const
static G4NistManager * Instance()
G4IonTable * GetIonTable() const
G4double GetIonMass(G4int Z, G4int A, G4int L=0, G4int lvl=0) const
Definition: G4IonTable.cc:1232
G4LorentzVector Get4Momentum() const
static G4ParticleTable * GetParticleTable()
int G4lrint(double ad)
Definition: templates.hh:163
#define DBL_MIN
Definition: templates.hh:75
G4double GetAtomicMassAmu(const G4String &symb) const
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
G4bool G4TripathiCrossSection::IsElementApplicable ( const G4DynamicParticle aPart,
G4int  Z,
const G4Material  
)
virtual

Reimplemented from G4VCrossSectionDataSet.

Definition at line 51 of file G4TripathiCrossSection.cc.

References G4ParticleDefinition::GetBaryonNumber(), G4DynamicParticle::GetDefinition(), G4DynamicParticle::GetKineticEnergy(), and python.hepunit::GeV.

53 {
54  G4bool result = false;
55  if ( (aPart->GetDefinition()->GetBaryonNumber()>2.5) &&
56  ( aPart->GetKineticEnergy()/aPart->GetDefinition()->GetBaryonNumber()<1*GeV) ) {
57  result = true;
58  }
59  return result;
60 }
G4double GetKineticEnergy() const
G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79

The documentation for this class was generated from the following files: