Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4Torus Class Reference

#include <G4Torus.hh>

Inheritance diagram for G4Torus:
G4CSGSolid G4VSolid

Public Member Functions

 G4Torus (const G4String &pName, G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
 
 ~G4Torus ()
 
G4double GetRmin () const
 
G4double GetRmax () const
 
G4double GetRtor () const
 
G4double GetSPhi () const
 
G4double GetDPhi () const
 
G4double GetCubicVolume ()
 
G4double GetSurfaceArea ()
 
EInside Inside (const G4ThreeVector &p) const
 
G4bool CalculateExtent (const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
 
void ComputeDimensions (G4VPVParameterisation *p, const G4int n, const G4VPhysicalVolume *pRep)
 
G4ThreeVector SurfaceNormal (const G4ThreeVector &p) const
 
G4double DistanceToIn (const G4ThreeVector &p, const G4ThreeVector &v) const
 
G4double DistanceToIn (const G4ThreeVector &p) const
 
G4double DistanceToOut (const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=G4bool(false), G4bool *validNorm=0, G4ThreeVector *n=0) const
 
G4double DistanceToOut (const G4ThreeVector &p) const
 
G4GeometryType GetEntityType () const
 
G4ThreeVector GetPointOnSurface () const
 
G4VSolidClone () const
 
std::ostream & StreamInfo (std::ostream &os) const
 
void DescribeYourselfTo (G4VGraphicsScene &scene) const
 
G4PolyhedronCreatePolyhedron () const
 
void SetAllParameters (G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
 
 G4Torus (__void__ &)
 
 G4Torus (const G4Torus &rhs)
 
G4Torusoperator= (const G4Torus &rhs)
 
- Public Member Functions inherited from G4CSGSolid
 G4CSGSolid (const G4String &pName)
 
virtual ~G4CSGSolid ()
 
virtual G4PolyhedronGetPolyhedron () const
 
 G4CSGSolid (__void__ &)
 
 G4CSGSolid (const G4CSGSolid &rhs)
 
G4CSGSolidoperator= (const G4CSGSolid &rhs)
 
- Public Member Functions inherited from G4VSolid
 G4VSolid (const G4String &name)
 
virtual ~G4VSolid ()
 
G4bool operator== (const G4VSolid &s) const
 
G4String GetName () const
 
void SetName (const G4String &name)
 
G4double GetTolerance () const
 
void DumpInfo () const
 
virtual G4VisExtent GetExtent () const
 
virtual const G4VSolidGetConstituentSolid (G4int no) const
 
virtual G4VSolidGetConstituentSolid (G4int no)
 
virtual const G4DisplacedSolidGetDisplacedSolidPtr () const
 
virtual G4DisplacedSolidGetDisplacedSolidPtr ()
 
 G4VSolid (__void__ &)
 
 G4VSolid (const G4VSolid &rhs)
 
G4VSolidoperator= (const G4VSolid &rhs)
 

Additional Inherited Members

- Protected Member Functions inherited from G4CSGSolid
G4double GetRadiusInRing (G4double rmin, G4double rmax) const
 
- Protected Member Functions inherited from G4VSolid
void CalculateClippedPolygonExtent (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipCrossSection (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipBetweenSections (G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
 
void ClipPolygon (G4ThreeVectorList &pPolygon, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis) const
 
G4double EstimateCubicVolume (G4int nStat, G4double epsilon) const
 
G4double EstimateSurfaceArea (G4int nStat, G4double ell) const
 
- Protected Attributes inherited from G4CSGSolid
G4double fCubicVolume
 
G4double fSurfaceArea
 
G4PolyhedronfpPolyhedron
 
- Protected Attributes inherited from G4VSolid
G4double kCarTolerance
 

Detailed Description

Definition at line 102 of file G4Torus.hh.

Constructor & Destructor Documentation

G4Torus::G4Torus ( const G4String pName,
G4double  pRmin,
G4double  pRmax,
G4double  pRtor,
G4double  pSPhi,
G4double  pDPhi 
)

Definition at line 80 of file G4Torus.cc.

References SetAllParameters().

Referenced by Clone().

86  : G4CSGSolid(pName)
87 {
88  SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi);
89 }
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:42
void SetAllParameters(G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
Definition: G4Torus.cc:96
G4Torus::~G4Torus ( )

Definition at line 193 of file G4Torus.cc.

194 {}
G4Torus::G4Torus ( __void__ &  a)

Definition at line 181 of file G4Torus.cc.

182  : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.),
183  fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ),
184  kRadTolerance(0.), kAngTolerance(0.),
185  halfCarTolerance(0.), halfAngTolerance(0.)
186 {
187 }
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:42
G4Torus::G4Torus ( const G4Torus rhs)

Definition at line 200 of file G4Torus.cc.

201  : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax),
202  fRtor(rhs.fRtor),fSPhi(rhs.fSPhi),fDPhi(rhs.fDPhi),
203  fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance),
204  kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance),
205  halfCarTolerance(rhs.halfCarTolerance),
206  halfAngTolerance(rhs.halfAngTolerance)
207 {
208 }
G4CSGSolid(const G4String &pName)
Definition: G4CSGSolid.cc:42

Member Function Documentation

G4bool G4Torus::CalculateExtent ( const EAxis  pAxis,
const G4VoxelLimits pVoxelLimit,
const G4AffineTransform pTransform,
G4double pmin,
G4double pmax 
) const
virtual

Implements G4VSolid.

Definition at line 414 of file G4Torus.cc.

References G4VSolid::ClipBetweenSections(), G4VSolid::ClipCrossSection(), G4VoxelLimits::GetMaxExtent(), G4VoxelLimits::GetMaxXExtent(), G4VoxelLimits::GetMaxYExtent(), G4VoxelLimits::GetMaxZExtent(), G4VoxelLimits::GetMinExtent(), G4VoxelLimits::GetMinXExtent(), G4VoxelLimits::GetMinYExtent(), G4VoxelLimits::GetMinZExtent(), Inside(), G4AffineTransform::Inverse(), G4AffineTransform::IsRotated(), G4VoxelLimits::IsXLimited(), G4VoxelLimits::IsYLimited(), G4VoxelLimits::IsZLimited(), G4VSolid::kCarTolerance, kOutside, kXAxis, kYAxis, kZAxis, G4AffineTransform::NetTranslation(), G4AffineTransform::TransformPoint(), python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

418 {
419  if ((!pTransform.IsRotated()) && (fDPhi==twopi) && (fRmin==0))
420  {
421  // Special case handling for unrotated solid torus
422  // Compute x/y/z mins and maxs for bounding box respecting limits,
423  // with early returns if outside limits. Then switch() on pAxis,
424  // and compute exact x and y limit for x/y case
425 
426  G4double xoffset,xMin,xMax;
427  G4double yoffset,yMin,yMax;
428  G4double zoffset,zMin,zMax;
429 
430  G4double RTorus,delta,diff1,diff2,maxDiff,newMin,newMax;
431  G4double xoff1,xoff2,yoff1,yoff2;
432 
433  xoffset = pTransform.NetTranslation().x();
434  xMin = xoffset - fRmax - fRtor ;
435  xMax = xoffset + fRmax + fRtor ;
436 
437  if (pVoxelLimit.IsXLimited())
438  {
439  if ( (xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance)
440  || (xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance) )
441  return false ;
442  else
443  {
444  if (xMin < pVoxelLimit.GetMinXExtent())
445  {
446  xMin = pVoxelLimit.GetMinXExtent() ;
447  }
448  if (xMax > pVoxelLimit.GetMaxXExtent())
449  {
450  xMax = pVoxelLimit.GetMaxXExtent() ;
451  }
452  }
453  }
454  yoffset = pTransform.NetTranslation().y();
455  yMin = yoffset - fRmax - fRtor ;
456  yMax = yoffset + fRmax + fRtor ;
457 
458  if (pVoxelLimit.IsYLimited())
459  {
460  if ( (yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance)
461  || (yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance) )
462  {
463  return false ;
464  }
465  else
466  {
467  if (yMin < pVoxelLimit.GetMinYExtent() )
468  {
469  yMin = pVoxelLimit.GetMinYExtent() ;
470  }
471  if (yMax > pVoxelLimit.GetMaxYExtent() )
472  {
473  yMax = pVoxelLimit.GetMaxYExtent() ;
474  }
475  }
476  }
477  zoffset = pTransform.NetTranslation().z() ;
478  zMin = zoffset - fRmax ;
479  zMax = zoffset + fRmax ;
480 
481  if (pVoxelLimit.IsZLimited())
482  {
483  if ( (zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance)
484  || (zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance) )
485  {
486  return false ;
487  }
488  else
489  {
490  if (zMin < pVoxelLimit.GetMinZExtent() )
491  {
492  zMin = pVoxelLimit.GetMinZExtent() ;
493  }
494  if (zMax > pVoxelLimit.GetMaxZExtent() )
495  {
496  zMax = pVoxelLimit.GetMaxZExtent() ;
497  }
498  }
499  }
500 
501  // Known to cut cylinder
502 
503  switch (pAxis)
504  {
505  case kXAxis:
506  yoff1=yoffset-yMin;
507  yoff2=yMax-yoffset;
508  if ( yoff1 >= 0 && yoff2 >= 0 )
509  {
510  // Y limits cross max/min x => no change
511  //
512  pMin = xMin ;
513  pMax = xMax ;
514  }
515  else
516  {
517  // Y limits don't cross max/min x => compute max delta x,
518  // hence new mins/maxs
519  //
520 
521  RTorus=fRmax+fRtor;
522  delta = RTorus*RTorus - yoff1*yoff1;
523  diff1 = (delta>0.) ? std::sqrt(delta) : 0.;
524  delta = RTorus*RTorus - yoff2*yoff2;
525  diff2 = (delta>0.) ? std::sqrt(delta) : 0.;
526  maxDiff = (diff1 > diff2) ? diff1:diff2 ;
527  newMin = xoffset - maxDiff ;
528  newMax = xoffset + maxDiff ;
529  pMin = (newMin < xMin) ? xMin : newMin ;
530  pMax = (newMax > xMax) ? xMax : newMax ;
531  }
532  break;
533 
534  case kYAxis:
535  xoff1 = xoffset - xMin ;
536  xoff2 = xMax - xoffset ;
537  if (xoff1 >= 0 && xoff2 >= 0 )
538  {
539  // X limits cross max/min y => no change
540  //
541  pMin = yMin ;
542  pMax = yMax ;
543  }
544  else
545  {
546  // X limits don't cross max/min y => compute max delta y,
547  // hence new mins/maxs
548  //
549  RTorus=fRmax+fRtor;
550  delta = RTorus*RTorus - xoff1*xoff1;
551  diff1 = (delta>0.) ? std::sqrt(delta) : 0.;
552  delta = RTorus*RTorus - xoff2*xoff2;
553  diff2 = (delta>0.) ? std::sqrt(delta) : 0.;
554  maxDiff = (diff1 > diff2) ? diff1 : diff2 ;
555  newMin = yoffset - maxDiff ;
556  newMax = yoffset + maxDiff ;
557  pMin = (newMin < yMin) ? yMin : newMin ;
558  pMax = (newMax > yMax) ? yMax : newMax ;
559  }
560  break;
561 
562  case kZAxis:
563  pMin=zMin;
564  pMax=zMax;
565  break;
566 
567  default:
568  break;
569  }
570  pMin -= kCarTolerance ;
571  pMax += kCarTolerance ;
572 
573  return true;
574  }
575  else
576  {
577  G4int i, noEntries, noBetweenSections4 ;
578  G4bool existsAfterClip = false ;
579 
580  // Calculate rotated vertex coordinates
581 
582  G4ThreeVectorList *vertices ;
583  G4int noPolygonVertices ; // will be 4
584  vertices = CreateRotatedVertices(pTransform,noPolygonVertices) ;
585 
586  pMin = +kInfinity ;
587  pMax = -kInfinity ;
588 
589  noEntries = vertices->size() ;
590  noBetweenSections4 = noEntries - noPolygonVertices ;
591 
592  for (i=0;i<noEntries;i+=noPolygonVertices)
593  {
594  ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
595  }
596  for (i=0;i<noBetweenSections4;i+=noPolygonVertices)
597  {
598  ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
599  }
600  if (pMin!=kInfinity||pMax!=-kInfinity)
601  {
602  existsAfterClip = true ; // Add 2*tolerance to avoid precision troubles
603  pMin -= kCarTolerance ;
604  pMax += kCarTolerance ;
605  }
606  else
607  {
608  // Check for case where completely enveloping clipping volume
609  // If point inside then we are confident that the solid completely
610  // envelopes the clipping volume. Hence set min/max extents according
611  // to clipping volume extents along the specified axis.
612 
613  G4ThreeVector clipCentre(
614  (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
615  (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
616  (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ) ;
617 
618  if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside )
619  {
620  existsAfterClip = true ;
621  pMin = pVoxelLimit.GetMinExtent(pAxis) ;
622  pMax = pVoxelLimit.GetMaxExtent(pAxis) ;
623  }
624  }
625  delete vertices;
626  return existsAfterClip;
627  }
628 }
EInside Inside(const G4ThreeVector &p) const
Definition: G4Torus.cc:634
void ClipCrossSection(G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
Definition: G4VSolid.cc:347
G4double GetMinYExtent() const
double x() const
G4AffineTransform Inverse() const
G4bool IsYLimited() const
G4bool IsRotated() const
G4ThreeVector NetTranslation() const
G4bool IsXLimited() const
int G4int
Definition: G4Types.hh:78
double z() const
G4double GetMaxXExtent() const
G4double GetMinZExtent() const
bool G4bool
Definition: G4Types.hh:79
std::vector< G4ThreeVector > G4ThreeVectorList
Definition: G4VSolid.hh:79
G4double GetMinXExtent() const
G4ThreeVector TransformPoint(const G4ThreeVector &vec) const
G4double GetMaxZExtent() const
double y() const
G4double GetMaxYExtent() const
G4double kCarTolerance
Definition: G4VSolid.hh:305
double G4double
Definition: G4Types.hh:76
G4double GetMaxExtent(const EAxis pAxis) const
G4bool IsZLimited() const
void ClipBetweenSections(G4ThreeVectorList *pVertices, const G4int pSectionIndex, const G4VoxelLimits &pVoxelLimit, const EAxis pAxis, G4double &pMin, G4double &pMax) const
Definition: G4VSolid.cc:378
G4double GetMinExtent(const EAxis pAxis) const
G4VSolid * G4Torus::Clone ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1700 of file G4Torus.cc.

References G4Torus().

1701 {
1702  return new G4Torus(*this);
1703 }
G4Torus(const G4String &pName, G4double pRmin, G4double pRmax, G4double pRtor, G4double pSPhi, G4double pDPhi)
Definition: G4Torus.cc:80
void G4Torus::ComputeDimensions ( G4VPVParameterisation p,
const G4int  n,
const G4VPhysicalVolume pRep 
)
virtual

Reimplemented from G4VSolid.

Definition at line 241 of file G4Torus.cc.

References G4VPVParameterisation::ComputeDimensions().

244 {
245  p->ComputeDimensions(*this,n,pRep);
246 }
const G4int n
virtual void ComputeDimensions(G4Box &, const G4int, const G4VPhysicalVolume *) const
G4Polyhedron * G4Torus::CreatePolyhedron ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1785 of file G4Torus.cc.

1786 {
1787  return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi);
1788 }
void G4Torus::DescribeYourselfTo ( G4VGraphicsScene scene) const
virtual

Implements G4VSolid.

Definition at line 1780 of file G4Torus.cc.

References G4VGraphicsScene::AddSolid().

1781 {
1782  scene.AddSolid (*this);
1783 }
virtual void AddSolid(const G4Box &)=0
G4double G4Torus::DistanceToIn ( const G4ThreeVector p,
const G4ThreeVector v 
) const
virtual

Implements G4VSolid.

Definition at line 989 of file G4Torus.cc.

References python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

Referenced by SurfaceNormal().

991 {
992 
993  G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value
994 
995  G4double sd[4] ;
996 
997  // Precalculated trig for phi intersections - used by r,z intersections to
998  // check validity
999 
1000  G4bool seg; // true if segmented
1001  G4double hDPhi; // half dphi
1002  G4double cPhi,sinCPhi=0.,cosCPhi=0.; // central phi
1003 
1004  G4double tolORMin2; // `generous' radii squared
1005  G4double tolORMax2;
1006 
1007  G4double Dist,xi,yi,zi,rhoi2,it2; // Intersection point variables
1008 
1009  G4double Comp;
1010  G4double cosSPhi,sinSPhi; // Trig for phi start intersect
1011  G4double ePhi,cosEPhi,sinEPhi; // for phi end intersect
1012 
1013  // Set phi divided flag and precalcs
1014  //
1015  if ( fDPhi < twopi )
1016  {
1017  seg = true ;
1018  hDPhi = 0.5*fDPhi ; // half delta phi
1019  cPhi = fSPhi + hDPhi ;
1020  sinCPhi = std::sin(cPhi) ;
1021  cosCPhi = std::cos(cPhi) ;
1022  }
1023  else
1024  {
1025  seg = false ;
1026  }
1027 
1028  if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax
1029  {
1030  tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ;
1031  }
1032  else
1033  {
1034  tolORMin2 = 0 ;
1035  }
1036  tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ;
1037 
1038  // Intersection with Rmax (possible return) and Rmin (must also check phi)
1039 
1040  G4double Rtor2 = fRtor*fRtor ;
1041 
1042  snxt = SolveNumericJT(p,v,fRmax,true);
1043 
1044  if (fRmin) // Possible Rmin intersection
1045  {
1046  sd[0] = SolveNumericJT(p,v,fRmin,true);
1047  if ( sd[0] < snxt ) { snxt = sd[0] ; }
1048  }
1049 
1050  //
1051  // Phi segment intersection
1052  //
1053  // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1054  //
1055  // o NOTE: Large duplication of code between sphi & ephi checks
1056  // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1057  // intersection check <=0 -> >=0
1058  // -> use some form of loop Construct ?
1059 
1060  if (seg)
1061  {
1062  sinSPhi = std::sin(fSPhi) ; // First phi surface ('S'tarting phi)
1063  cosSPhi = std::cos(fSPhi) ;
1064  Comp = v.x()*sinSPhi - v.y()*cosSPhi ; // Component in outwards
1065  // normal direction
1066  if (Comp < 0 )
1067  {
1068  Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1069 
1070  if (Dist < halfCarTolerance)
1071  {
1072  sphi = Dist/Comp ;
1073  if (sphi < snxt)
1074  {
1075  if ( sphi < 0 ) { sphi = 0 ; }
1076 
1077  xi = p.x() + sphi*v.x() ;
1078  yi = p.y() + sphi*v.y() ;
1079  zi = p.z() + sphi*v.z() ;
1080  rhoi2 = xi*xi + yi*yi ;
1081  it2 = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1082 
1083  if ( it2 >= tolORMin2 && it2 <= tolORMax2 )
1084  {
1085  // r intersection is good - check intersecting
1086  // with correct half-plane
1087  //
1088  if ((yi*cosCPhi-xi*sinCPhi)<=0) { snxt=sphi; }
1089  }
1090  }
1091  }
1092  }
1093  ePhi=fSPhi+fDPhi; // Second phi surface ('E'nding phi)
1094  sinEPhi=std::sin(ePhi);
1095  cosEPhi=std::cos(ePhi);
1096  Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);
1097 
1098  if ( Comp < 0 ) // Component in outwards normal dirn
1099  {
1100  Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1101 
1102  if (Dist < halfCarTolerance )
1103  {
1104  sphi = Dist/Comp ;
1105 
1106  if (sphi < snxt )
1107  {
1108  if (sphi < 0 ) { sphi = 0 ; }
1109 
1110  xi = p.x() + sphi*v.x() ;
1111  yi = p.y() + sphi*v.y() ;
1112  zi = p.z() + sphi*v.z() ;
1113  rhoi2 = xi*xi + yi*yi ;
1114  it2 = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1115 
1116  if (it2 >= tolORMin2 && it2 <= tolORMax2)
1117  {
1118  // z and r intersections good - check intersecting
1119  // with correct half-plane
1120  //
1121  if ((yi*cosCPhi-xi*sinCPhi)>=0) { snxt=sphi; }
1122  }
1123  }
1124  }
1125  }
1126  }
1127  if(snxt < halfCarTolerance) { snxt = 0.0 ; }
1128 
1129  return snxt ;
1130 }
double x() const
double z() const
bool G4bool
Definition: G4Types.hh:79
double y() const
double G4double
Definition: G4Types.hh:76
G4double G4Torus::DistanceToIn ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 1139 of file G4Torus.cc.

References python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

1140 {
1141  G4double safe=0.0, safe1, safe2 ;
1142  G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1143  G4double rho2, rho, pt2, pt ;
1144 
1145  rho2 = p.x()*p.x() + p.y()*p.y() ;
1146  rho = std::sqrt(rho2) ;
1147  pt2 = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
1148  pt = std::sqrt(pt2) ;
1149 
1150  safe1 = fRmin - pt ;
1151  safe2 = pt - fRmax ;
1152 
1153  if (safe1 > safe2) { safe = safe1; }
1154  else { safe = safe2; }
1155 
1156  if ( fDPhi < twopi && rho )
1157  {
1158  phiC = fSPhi + fDPhi*0.5 ;
1159  cosPhiC = std::cos(phiC) ;
1160  sinPhiC = std::sin(phiC) ;
1161  cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1162 
1163  if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point
1164  { // Point lies outside phi range
1165  if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1166  {
1167  safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1168  }
1169  else
1170  {
1171  ePhi = fSPhi + fDPhi ;
1172  safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1173  }
1174  if (safePhi > safe) { safe = safePhi ; }
1175  }
1176  }
1177  if (safe < 0 ) { safe = 0 ; }
1178  return safe;
1179 }
double x() const
double z() const
double y() const
double G4double
Definition: G4Types.hh:76
G4double G4Torus::DistanceToOut ( const G4ThreeVector p,
const G4ThreeVector v,
const G4bool  calcNorm = G4bool(false),
G4bool validNorm = 0,
G4ThreeVector n = 0 
) const
virtual

Implements G4VSolid.

Definition at line 1187 of file G4Torus.cc.

References G4VSolid::DumpInfo(), G4cout, G4endl, G4Exception(), JustWarning, G4VSolid::kCarTolerance, python.hepunit::mm, python.hepunit::pi, python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

Referenced by SurfaceNormal().

1192 {
1193  ESide side = kNull, sidephi = kNull ;
1194  G4double snxt = kInfinity, sphi, sd[4] ;
1195 
1196  // Vars for phi intersection
1197  //
1198  G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi;
1199  G4double cPhi, sinCPhi, cosCPhi ;
1200  G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ;
1201 
1202  // Radial Intersections Defenitions & General Precals
1203 
1204  //////////////////////// new calculation //////////////////////
1205 
1206 #if 1
1207 
1208  // This is the version with the calculation of CalcNorm = true
1209  // To be done: Check the precision of this calculation.
1210  // If you want return always validNorm = false, then take the version below
1211 
1212  G4double rho2 = p.x()*p.x()+p.y()*p.y();
1213  G4double rho = std::sqrt(rho2) ;
1214 
1215  G4double pt2 = rho2 + p.z()*p.z() + fRtor * (fRtor - 2.0*rho);
1216  // Regroup for slightly better FP accuracy
1217 
1218  if( pt2 < 0.0)
1219  {
1220  pt2= std::fabs( pt2 );
1221  }
1222 
1223  G4double pt = std::sqrt(pt2) ;
1224 
1225  G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
1226 
1227  G4double tolRMax = fRmax - fRmaxTolerance ;
1228 
1229  G4double vDotNmax = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ;
1230  G4double pDotxyNmax = (1 - fRtor/rho) ;
1231 
1232  if( (pt2 > tolRMax*tolRMax) && (vDotNmax >= 0) )
1233  {
1234  // On tolerant boundary & heading outwards (or perpendicular to) outer
1235  // radial surface -> leaving immediately with *n for really convex part
1236  // only
1237 
1238  if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) )
1239  {
1240  *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt,
1241  p.y()*(1 - fRtor/rho)/pt,
1242  p.z()/pt ) ;
1243  *validNorm = true ;
1244  }
1245 
1246  return snxt = 0 ; // Leaving by Rmax immediately
1247  }
1248 
1249  snxt = SolveNumericJT(p,v,fRmax,false);
1250  side = kRMax ;
1251 
1252  // rmin
1253 
1254  if ( fRmin )
1255  {
1256  G4double tolRMin = fRmin + fRminTolerance ;
1257 
1258  if ( (pt2 < tolRMin*tolRMin) && (vDotNmax < 0) )
1259  {
1260  if (calcNorm) { *validNorm = false ; } // Concave surface of the torus
1261  return snxt = 0 ; // Leaving by Rmin immediately
1262  }
1263 
1264  sd[0] = SolveNumericJT(p,v,fRmin,false);
1265  if ( sd[0] < snxt )
1266  {
1267  snxt = sd[0] ;
1268  side = kRMin ;
1269  }
1270  }
1271 
1272 #else
1273 
1274  // this is the "conservative" version which return always validnorm = false
1275  // NOTE: using this version the unit test testG4Torus will break
1276 
1277  snxt = SolveNumericJT(p,v,fRmax,false);
1278  side = kRMax ;
1279 
1280  if ( fRmin )
1281  {
1282  sd[0] = SolveNumericJT(p,v,fRmin,false);
1283  if ( sd[0] < snxt )
1284  {
1285  snxt = sd[0] ;
1286  side = kRMin ;
1287  }
1288  }
1289 
1290  if ( calcNorm && (snxt == 0.0) )
1291  {
1292  *validNorm = false ; // Leaving solid, but possible re-intersection
1293  return snxt ;
1294  }
1295 
1296 #endif
1297 
1298  if (fDPhi < twopi) // Phi Intersections
1299  {
1300  sinSPhi = std::sin(fSPhi) ;
1301  cosSPhi = std::cos(fSPhi) ;
1302  ePhi = fSPhi + fDPhi ;
1303  sinEPhi = std::sin(ePhi) ;
1304  cosEPhi = std::cos(ePhi) ;
1305  cPhi = fSPhi + fDPhi*0.5 ;
1306  sinCPhi = std::sin(cPhi) ;
1307  cosCPhi = std::cos(cPhi) ;
1308 
1309  // angle calculation with correction
1310  // of difference in domain of atan2 and Sphi
1311  //
1312  vphi = std::atan2(v.y(),v.x()) ;
1313 
1314  if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; }
1315  else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; }
1316 
1317  if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1318  {
1319  pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside
1320  pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1321 
1322  // Comp -ve when in direction of outwards normal
1323  //
1324  compS = -sinSPhi*v.x() + cosSPhi*v.y() ;
1325  compE = sinEPhi*v.x() - cosEPhi*v.y() ;
1326  sidephi = kNull ;
1327 
1328  if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1329  && (pDistE <= halfCarTolerance) ) )
1330  || ( (fDPhi > pi) && !((pDistS > halfCarTolerance)
1331  && (pDistE > halfCarTolerance) ) ) )
1332  {
1333  // Inside both phi *full* planes
1334 
1335  if ( compS < 0 )
1336  {
1337  sphi = pDistS/compS ;
1338 
1339  if (sphi >= -halfCarTolerance)
1340  {
1341  xi = p.x() + sphi*v.x() ;
1342  yi = p.y() + sphi*v.y() ;
1343 
1344  // Check intersecting with correct half-plane
1345  // (if not -> no intersect)
1346  //
1347  if ( (std::fabs(xi)<=kCarTolerance)
1348  && (std::fabs(yi)<=kCarTolerance) )
1349  {
1350  sidephi = kSPhi;
1351  if ( ((fSPhi-halfAngTolerance)<=vphi)
1352  && ((ePhi+halfAngTolerance)>=vphi) )
1353  {
1354  sphi = kInfinity;
1355  }
1356  }
1357  else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1358  {
1359  sphi = kInfinity ;
1360  }
1361  else
1362  {
1363  sidephi = kSPhi ;
1364  }
1365  }
1366  else
1367  {
1368  sphi = kInfinity ;
1369  }
1370  }
1371  else
1372  {
1373  sphi = kInfinity ;
1374  }
1375 
1376  if ( compE < 0 )
1377  {
1378  sphi2 = pDistE/compE ;
1379 
1380  // Only check further if < starting phi intersection
1381  //
1382  if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) )
1383  {
1384  xi = p.x() + sphi2*v.x() ;
1385  yi = p.y() + sphi2*v.y() ;
1386 
1387  if ( (std::fabs(xi)<=kCarTolerance)
1388  && (std::fabs(yi)<=kCarTolerance) )
1389  {
1390  // Leaving via ending phi
1391  //
1392  if( !( (fSPhi-halfAngTolerance <= vphi)
1393  && (ePhi+halfAngTolerance >= vphi) ) )
1394  {
1395  sidephi = kEPhi ;
1396  sphi = sphi2;
1397  }
1398  }
1399  else // Check intersecting with correct half-plane
1400  {
1401  if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1402  {
1403  // Leaving via ending phi
1404  //
1405  sidephi = kEPhi ;
1406  sphi = sphi2;
1407 
1408  }
1409  }
1410  }
1411  }
1412  }
1413  else
1414  {
1415  sphi = kInfinity ;
1416  }
1417  }
1418  else
1419  {
1420  // On z axis + travel not || to z axis -> if phi of vector direction
1421  // within phi of shape, Step limited by rmax, else Step =0
1422 
1423  vphi = std::atan2(v.y(),v.x());
1424 
1425  if ( ( fSPhi-halfAngTolerance <= vphi ) &&
1426  ( vphi <= ( ePhi+halfAngTolerance ) ) )
1427  {
1428  sphi = kInfinity;
1429  }
1430  else
1431  {
1432  sidephi = kSPhi ; // arbitrary
1433  sphi=0;
1434  }
1435  }
1436 
1437  // Order intersections
1438 
1439  if (sphi<snxt)
1440  {
1441  snxt=sphi;
1442  side=sidephi;
1443  }
1444  }
1445 
1446  G4double rhoi2,rhoi,it2,it,iDotxyNmax ;
1447  // Note: by numerical computation we know where the ray hits the torus
1448  // So I propose to return the side where the ray hits
1449 
1450  if (calcNorm)
1451  {
1452  switch(side)
1453  {
1454  case kRMax: // n is unit vector
1455  xi = p.x() + snxt*v.x() ;
1456  yi =p.y() + snxt*v.y() ;
1457  zi = p.z() + snxt*v.z() ;
1458  rhoi2 = xi*xi + yi*yi ;
1459  rhoi = std::sqrt(rhoi2) ;
1460  it2 = std::fabs(rhoi2 + zi*zi + fRtor*fRtor - 2*fRtor*rhoi) ;
1461  it = std::sqrt(it2) ;
1462  iDotxyNmax = (1-fRtor/rhoi) ;
1463  if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax
1464  {
1465  *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it,
1466  yi*(1-fRtor/rhoi)/it,
1467  zi/it ) ;
1468  *validNorm = true ;
1469  }
1470  else
1471  {
1472  *validNorm = false ; // concave-convex part of Rmax
1473  }
1474  break ;
1475 
1476  case kRMin:
1477  *validNorm = false ; // Rmin is concave or concave-convex
1478  break;
1479 
1480  case kSPhi:
1481  if (fDPhi <= pi )
1482  {
1483  *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
1484  *validNorm=true;
1485  }
1486  else
1487  {
1488  *validNorm = false ;
1489  }
1490  break ;
1491 
1492  case kEPhi:
1493  if (fDPhi <= pi)
1494  {
1495  *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
1496  *validNorm=true;
1497  }
1498  else
1499  {
1500  *validNorm = false ;
1501  }
1502  break;
1503 
1504  default:
1505 
1506  // It seems we go here from time to time ...
1507 
1508  G4cout << G4endl;
1509  DumpInfo();
1510  std::ostringstream message;
1511  G4int oldprc = message.precision(16);
1512  message << "Undefined side for valid surface normal to solid."
1513  << G4endl
1514  << "Position:" << G4endl << G4endl
1515  << "p.x() = " << p.x()/mm << " mm" << G4endl
1516  << "p.y() = " << p.y()/mm << " mm" << G4endl
1517  << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl
1518  << "Direction:" << G4endl << G4endl
1519  << "v.x() = " << v.x() << G4endl
1520  << "v.y() = " << v.y() << G4endl
1521  << "v.z() = " << v.z() << G4endl << G4endl
1522  << "Proposed distance :" << G4endl << G4endl
1523  << "snxt = " << snxt/mm << " mm" << G4endl;
1524  message.precision(oldprc);
1525  G4Exception("G4Torus::DistanceToOut(p,v,..)",
1526  "GeomSolids1002",JustWarning, message);
1527  break;
1528  }
1529  }
1530  if ( snxt<halfCarTolerance ) { snxt=0 ; }
1531 
1532  return snxt;
1533 }
CLHEP::Hep3Vector G4ThreeVector
double x() const
int G4int
Definition: G4Types.hh:78
double z() const
void DumpInfo() const
G4GLOB_DLL std::ostream G4cout
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
double y() const
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:305
ESide
Definition: G4Cons.cc:68
double G4double
Definition: G4Types.hh:76
G4double G4Torus::DistanceToOut ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 1539 of file G4Torus.cc.

References G4VSolid::DumpInfo(), G4cout, G4endl, G4Exception(), Inside(), JustWarning, kOutside, python.hepunit::mm, python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

1540 {
1541  G4double safe=0.0,safeR1,safeR2;
1542  G4double rho2,rho,pt2,pt ;
1543  G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;
1544  rho2 = p.x()*p.x() + p.y()*p.y() ;
1545  rho = std::sqrt(rho2) ;
1546  pt2 = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
1547  pt = std::sqrt(pt2) ;
1548 
1549 #ifdef G4CSGDEBUG
1550  if( Inside(p) == kOutside )
1551  {
1552  G4int oldprc = G4cout.precision(16) ;
1553  G4cout << G4endl ;
1554  DumpInfo();
1555  G4cout << "Position:" << G4endl << G4endl ;
1556  G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
1557  G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
1558  G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
1559  G4cout.precision(oldprc);
1560  G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002",
1561  JustWarning, "Point p is outside !?" );
1562  }
1563 #endif
1564 
1565  if (fRmin)
1566  {
1567  safeR1 = pt - fRmin ;
1568  safeR2 = fRmax - pt ;
1569 
1570  if (safeR1 < safeR2) { safe = safeR1 ; }
1571  else { safe = safeR2 ; }
1572  }
1573  else
1574  {
1575  safe = fRmax - pt ;
1576  }
1577 
1578  // Check if phi divided, Calc distances closest phi plane
1579  //
1580  if (fDPhi<twopi) // Above/below central phi of Torus?
1581  {
1582  phiC = fSPhi + fDPhi*0.5 ;
1583  cosPhiC = std::cos(phiC) ;
1584  sinPhiC = std::sin(phiC) ;
1585 
1586  if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1587  {
1588  safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1589  }
1590  else
1591  {
1592  ePhi = fSPhi + fDPhi ;
1593  safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1594  }
1595  if (safePhi < safe) { safe = safePhi ; }
1596  }
1597  if (safe < 0) { safe = 0 ; }
1598  return safe ;
1599 }
EInside Inside(const G4ThreeVector &p) const
Definition: G4Torus.cc:634
double x() const
int G4int
Definition: G4Types.hh:78
double z() const
void DumpInfo() const
G4GLOB_DLL std::ostream G4cout
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
double y() const
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76
G4double G4Torus::GetCubicVolume ( )
inlinevirtual

Reimplemented from G4VSolid.

G4double G4Torus::GetDPhi ( ) const
inline
G4GeometryType G4Torus::GetEntityType ( ) const
virtual

Implements G4VSolid.

Definition at line 1691 of file G4Torus.cc.

1692 {
1693  return G4String("G4Torus");
1694 }
G4ThreeVector G4Torus::GetPointOnSurface ( ) const
virtual

Reimplemented from G4VSolid.

Definition at line 1732 of file G4Torus.cc.

References G4CSGSolid::GetRadiusInRing(), python.hepunit::pi, G4INCL::DeJongSpin::shoot(), and python.hepunit::twopi.

1733 {
1734  G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand;
1735 
1736  phi = RandFlat::shoot(fSPhi,fSPhi+fDPhi);
1737  theta = RandFlat::shoot(0.,twopi);
1738 
1739  cosu = std::cos(phi); sinu = std::sin(phi);
1740  cosv = std::cos(theta); sinv = std::sin(theta);
1741 
1742  // compute the areas
1743 
1744  aOut = (fDPhi)*twopi*fRtor*fRmax;
1745  aIn = (fDPhi)*twopi*fRtor*fRmin;
1746  aSide = pi*(fRmax*fRmax-fRmin*fRmin);
1747 
1748  if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; }
1749  chose = RandFlat::shoot(0.,aOut + aIn + 2.*aSide);
1750 
1751  if(chose < aOut)
1752  {
1753  return G4ThreeVector ((fRtor+fRmax*cosv)*cosu,
1754  (fRtor+fRmax*cosv)*sinu, fRmax*sinv);
1755  }
1756  else if( (chose >= aOut) && (chose < aOut + aIn) )
1757  {
1758  return G4ThreeVector ((fRtor+fRmin*cosv)*cosu,
1759  (fRtor+fRmin*cosv)*sinu, fRmin*sinv);
1760  }
1761  else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) )
1762  {
1763  rRand = GetRadiusInRing(fRmin,fRmax);
1764  return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi),
1765  (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv);
1766  }
1767  else
1768  {
1769  rRand = GetRadiusInRing(fRmin,fRmax);
1770  return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi),
1771  (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi),
1772  rRand*sinv);
1773  }
1774 }
ThreeVector shoot(const G4int Ap, const G4int Af)
CLHEP::Hep3Vector G4ThreeVector
G4double GetRadiusInRing(G4double rmin, G4double rmax) const
Definition: G4CSGSolid.cc:101
double G4double
Definition: G4Types.hh:76
G4double G4Torus::GetRmax ( ) const
inline
G4double G4Torus::GetRmin ( ) const
inline
G4double G4Torus::GetRtor ( ) const
inline
G4double G4Torus::GetSPhi ( ) const
inline
G4double G4Torus::GetSurfaceArea ( )
inlinevirtual

Reimplemented from G4VSolid.

EInside G4Torus::Inside ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 634 of file G4Torus.cc.

References kInside, kOutside, kSurface, python.hepunit::twopi, CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

Referenced by CalculateExtent(), DistanceToOut(), and SurfaceNormal().

635 {
636  G4double r2, pt2, pPhi, tolRMin, tolRMax ;
637 
638  EInside in = kOutside ;
639 
640  // General precals
641  //
642  r2 = p.x()*p.x() + p.y()*p.y() ;
643  pt2 = r2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*std::sqrt(r2) ;
644 
645  if (fRmin) tolRMin = fRmin + fRminTolerance ;
646  else tolRMin = 0 ;
647 
648  tolRMax = fRmax - fRmaxTolerance;
649 
650  if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax )
651  {
652  if ( fDPhi == twopi || pt2 == 0 ) // on torus swept axis
653  {
654  in = kInside ;
655  }
656  else
657  {
658  // Try inner tolerant phi boundaries (=>inside)
659  // if not inside, try outer tolerant phi boundaries
660 
661  pPhi = std::atan2(p.y(),p.x()) ;
662 
663  if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi
664  if ( fSPhi >= 0 )
665  {
666  if ( (std::fabs(pPhi) < halfAngTolerance)
667  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
668  {
669  pPhi += twopi ; // 0 <= pPhi < 2pi
670  }
671  if ( (pPhi >= fSPhi + halfAngTolerance)
672  && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
673  {
674  in = kInside ;
675  }
676  else if ( (pPhi >= fSPhi - halfAngTolerance)
677  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
678  {
679  in = kSurface ;
680  }
681  }
682  else // fSPhi < 0
683  {
684  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
685  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;}
686  else
687  {
688  in = kSurface ;
689  }
690  }
691  }
692  }
693  else // Try generous boundaries
694  {
695  tolRMin = fRmin - fRminTolerance ;
696  tolRMax = fRmax + fRmaxTolerance ;
697 
698  if (tolRMin < 0 ) { tolRMin = 0 ; }
699 
700  if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) )
701  {
702  if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis
703  {
704  in = kSurface ;
705  }
706  else // Try outer tolerant phi boundaries only
707  {
708  pPhi = std::atan2(p.y(),p.x()) ;
709 
710  if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi
711  if ( fSPhi >= 0 )
712  {
713  if ( (std::fabs(pPhi) < halfAngTolerance)
714  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
715  {
716  pPhi += twopi ; // 0 <= pPhi < 2pi
717  }
718  if ( (pPhi >= fSPhi - halfAngTolerance)
719  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
720  {
721  in = kSurface;
722  }
723  }
724  else // fSPhi < 0
725  {
726  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
727  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;}
728  else
729  {
730  in = kSurface ;
731  }
732  }
733  }
734  }
735  }
736  return in ;
737 }
double x() const
double z() const
EInside
Definition: geomdefs.hh:58
double y() const
double G4double
Definition: G4Types.hh:76
G4Torus & G4Torus::operator= ( const G4Torus rhs)

Definition at line 214 of file G4Torus.cc.

References G4CSGSolid::operator=().

215 {
216  // Check assignment to self
217  //
218  if (this == &rhs) { return *this; }
219 
220  // Copy base class data
221  //
223 
224  // Copy data
225  //
226  fRmin = rhs.fRmin; fRmax = rhs.fRmax;
227  fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
228  fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance;
229  kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance;
230  halfCarTolerance = rhs.halfCarTolerance;
231  halfAngTolerance = rhs.halfAngTolerance;
232 
233  return *this;
234 }
G4CSGSolid & operator=(const G4CSGSolid &rhs)
Definition: G4CSGSolid.cc:82
void G4Torus::SetAllParameters ( G4double  pRmin,
G4double  pRmax,
G4double  pRtor,
G4double  pSPhi,
G4double  pDPhi 
)

Definition at line 96 of file G4Torus.cc.

References FatalException, G4CSGSolid::fCubicVolume, G4CSGSolid::fpPolyhedron, G4CSGSolid::fSurfaceArea, G4endl, G4Exception(), G4GeometryTolerance::GetAngularTolerance(), G4GeometryTolerance::GetInstance(), G4VSolid::GetName(), G4GeometryTolerance::GetRadialTolerance(), G4VSolid::kCarTolerance, G4INCL::Math::max(), and python.hepunit::twopi.

Referenced by G4Torus().

101 {
102  const G4double fEpsilon = 4.e-11; // relative tolerance of radii
103 
104  fCubicVolume = 0.;
105  fSurfaceArea = 0.;
106  fpPolyhedron = 0;
107 
110 
111  halfCarTolerance = 0.5*kCarTolerance;
112  halfAngTolerance = 0.5*kAngTolerance;
113 
114  if ( pRtor >= pRmax+1.e3*kCarTolerance ) // Check swept radius, as in G4Cons
115  {
116  fRtor = pRtor ;
117  }
118  else
119  {
120  std::ostringstream message;
121  message << "Invalid swept radius for Solid: " << GetName() << G4endl
122  << " pRtor = " << pRtor << ", pRmax = " << pRmax;
123  G4Exception("G4Torus::SetAllParameters()",
124  "GeomSolids0002", FatalException, message);
125  }
126 
127  // Check radii, as in G4Cons
128  //
129  if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 )
130  {
131  if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; }
132  else { fRmin = 0.0 ; }
133  fRmax = pRmax ;
134  }
135  else
136  {
137  std::ostringstream message;
138  message << "Invalid values of radii for Solid: " << GetName() << G4endl
139  << " pRmin = " << pRmin << ", pRmax = " << pRmax;
140  G4Exception("G4Torus::SetAllParameters()",
141  "GeomSolids0002", FatalException, message);
142  }
143 
144  // Relative tolerances
145  //
146  fRminTolerance = (fRmin)
147  ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0;
148  fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) );
149 
150  // Check angles
151  //
152  if ( pDPhi >= twopi ) { fDPhi = twopi ; }
153  else
154  {
155  if (pDPhi > 0) { fDPhi = pDPhi ; }
156  else
157  {
158  std::ostringstream message;
159  message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl
160  << " pDPhi = " << pDPhi;
161  G4Exception("G4Torus::SetAllParameters()",
162  "GeomSolids0002", FatalException, message);
163  }
164  }
165 
166  // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0
167  //
168  fSPhi = pSPhi;
169 
170  if (fSPhi < 0) { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; }
171  else { fSPhi = std::fmod(fSPhi,twopi) ; }
172 
173  if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; }
174 }
G4String GetName() const
G4double fCubicVolume
Definition: G4CSGSolid.hh:78
G4double fSurfaceArea
Definition: G4CSGSolid.hh:79
G4Polyhedron * fpPolyhedron
Definition: G4CSGSolid.hh:80
G4double GetRadialTolerance() const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
T max(const T t1, const T t2)
brief Return the largest of the two arguments
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:305
double G4double
Definition: G4Types.hh:76
G4double GetAngularTolerance() const
static G4GeometryTolerance * GetInstance()
std::ostream & G4Torus::StreamInfo ( std::ostream &  os) const
virtual

Reimplemented from G4CSGSolid.

Definition at line 1709 of file G4Torus.cc.

References python.hepunit::degree, G4VSolid::GetName(), and python.hepunit::mm.

1710 {
1711  G4int oldprc = os.precision(16);
1712  os << "-----------------------------------------------------------\n"
1713  << " *** Dump for solid - " << GetName() << " ***\n"
1714  << " ===================================================\n"
1715  << " Solid type: G4Torus\n"
1716  << " Parameters: \n"
1717  << " inner radius: " << fRmin/mm << " mm \n"
1718  << " outer radius: " << fRmax/mm << " mm \n"
1719  << " swept radius: " << fRtor/mm << " mm \n"
1720  << " starting phi: " << fSPhi/degree << " degrees \n"
1721  << " delta phi : " << fDPhi/degree << " degrees \n"
1722  << "-----------------------------------------------------------\n";
1723  os.precision(oldprc);
1724 
1725  return os;
1726 }
G4String GetName() const
int G4int
Definition: G4Types.hh:78
tuple degree
Definition: hepunit.py:69
G4ThreeVector G4Torus::SurfaceNormal ( const G4ThreeVector p) const
virtual

Implements G4VSolid.

Definition at line 745 of file G4Torus.cc.

References DistanceToIn(), DistanceToOut(), G4endl, G4Exception(), Inside(), JustWarning, G4VSolid::kCarTolerance, kInside, kOutside, kSurface, G4INCL::Math::max(), python.hepunit::twopi, CLHEP::Hep3Vector::unit(), CLHEP::Hep3Vector::x(), CLHEP::Hep3Vector::y(), and CLHEP::Hep3Vector::z().

746 {
747  G4int noSurfaces = 0;
748  G4double rho2, rho, pt2, pt, pPhi;
749  G4double distRMin = kInfinity;
750  G4double distSPhi = kInfinity, distEPhi = kInfinity;
751 
752  // To cope with precision loss
753  //
754  const G4double delta = std::max(10.0*kCarTolerance,
755  1.0e-8*(fRtor+fRmax));
756  const G4double dAngle = 10.0*kAngTolerance;
757 
758  G4ThreeVector nR, nPs, nPe;
759  G4ThreeVector norm, sumnorm(0.,0.,0.);
760 
761  rho2 = p.x()*p.x() + p.y()*p.y();
762  rho = std::sqrt(rho2);
763  pt2 = rho2+p.z()*p.z() +fRtor * (fRtor-2*rho);
764  pt2 = std::max(pt2, 0.0); // std::fabs(pt2);
765  pt = std::sqrt(pt2) ;
766 
767  G4double distRMax = std::fabs(pt - fRmax);
768  if(fRmin) distRMin = std::fabs(pt - fRmin);
769 
770  if( rho > delta && pt != 0.0 )
771  {
772  G4double redFactor= (rho-fRtor)/rho;
773  nR = G4ThreeVector( p.x()*redFactor, // p.x()*(1.-fRtor/rho),
774  p.y()*redFactor, // p.y()*(1.-fRtor/rho),
775  p.z() );
776  nR *= 1.0/pt;
777  }
778 
779  if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z)
780  {
781  if ( rho )
782  {
783  pPhi = std::atan2(p.y(),p.x());
784 
785  if(pPhi < fSPhi-delta) { pPhi += twopi; }
786  else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; }
787 
788  distSPhi = std::fabs( pPhi - fSPhi );
789  distEPhi = std::fabs(pPhi-fSPhi-fDPhi);
790  }
791  nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
792  nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
793  }
794  if( distRMax <= delta )
795  {
796  noSurfaces ++;
797  sumnorm += nR;
798  }
799  else if( fRmin && (distRMin <= delta) ) // Must not be on both Outer and Inner
800  {
801  noSurfaces ++;
802  sumnorm -= nR;
803  }
804 
805  // To be on one of the 'phi' surfaces,
806  // it must be within the 'tube' - with tolerance
807 
808  if( (fDPhi < twopi) && (fRmin-delta <= pt) && (pt <= (fRmax+delta)) )
809  {
810  if (distSPhi <= dAngle)
811  {
812  noSurfaces ++;
813  sumnorm += nPs;
814  }
815  if (distEPhi <= dAngle)
816  {
817  noSurfaces ++;
818  sumnorm += nPe;
819  }
820  }
821  if ( noSurfaces == 0 )
822  {
823 #ifdef G4CSGDEBUG
825  ed.precision(16);
826 
827  EInside inIt= Inside( p );
828 
829  if( inIt != kSurface )
830  {
831  ed << " ERROR> Surface Normal was called for Torus,"
832  << " with point not on surface." << G4endl;
833  }
834  else
835  {
836  ed << " ERROR> Surface Normal has not found a surface, "
837  << " despite the point being on the surface. " <<G4endl;
838  }
839 
840  if( inIt != kInside)
841  {
842  ed << " Safety (Dist To In) = " << DistanceToIn(p) << G4endl;
843  }
844  if( inIt != kOutside)
845  {
846  ed << " Safety (Dist to Out) = " << DistanceToOut(p) << G4endl;
847  }
848  ed << " Coordinates of point : " << p << G4endl;
849  ed << " Parameters of solid : " << G4endl << *this << G4endl;
850 
851  if( inIt == kSurface )
852  {
853  G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
854  JustWarning, ed,
855  "Failing to find normal, even though point is on surface!" );
856  }
857  else
858  {
859  static const char* NameInside[3]= { "Inside", "Surface", "Outside" };
860  ed << " The point is " << NameInside[inIt] << " the solid. "<< G4endl;
861  G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
862  JustWarning, ed, "Point p is not on surface !?" );
863  }
864 #endif
865  norm = ApproxSurfaceNormal(p);
866  }
867  else if ( noSurfaces == 1 ) { norm = sumnorm; }
868  else { norm = sumnorm.unit(); }
869 
870  // G4cout << "G4Torus::SurfaceNormal p= " << p << " returns norm= " << norm << G4endl;
871 
872  return norm ;
873 }
EInside Inside(const G4ThreeVector &p) const
Definition: G4Torus.cc:634
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
CLHEP::Hep3Vector G4ThreeVector
double x() const
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
Definition: G4Torus.cc:989
int G4int
Definition: G4Types.hh:78
double z() const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=G4bool(false), G4bool *validNorm=0, G4ThreeVector *n=0) const
Definition: G4Torus.cc:1187
T max(const T t1, const T t2)
brief Return the largest of the two arguments
EInside
Definition: geomdefs.hh:58
Hep3Vector unit() const
double y() const
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:305
double G4double
Definition: G4Types.hh:76

The documentation for this class was generated from the following files: