Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4NeutronHPLabAngularEnergy Class Reference

#include <G4NeutronHPLabAngularEnergy.hh>

Inheritance diagram for G4NeutronHPLabAngularEnergy:
G4VNeutronHPEnergyAngular

Public Member Functions

 G4NeutronHPLabAngularEnergy ()
 
 ~G4NeutronHPLabAngularEnergy ()
 
void Init (std::istream &aDataFile)
 
G4ReactionProductSample (G4double anEnergy, G4double massCode, G4double mass)
 
G4double MeanEnergyOfThisInteraction ()
 
- Public Member Functions inherited from G4VNeutronHPEnergyAngular
 G4VNeutronHPEnergyAngular ()
 
virtual ~G4VNeutronHPEnergyAngular ()
 
void SetNeutron (G4ReactionProduct *aNeutron)
 
void SetTarget (G4ReactionProduct *aTarget)
 
G4ReactionProductGetTarget ()
 
G4ReactionProductGetNeutron ()
 
G4ReactionProductGetCMS ()
 
void SetQValue (G4double aValue)
 
virtual void ClearHistories ()
 

Additional Inherited Members

- Protected Member Functions inherited from G4VNeutronHPEnergyAngular
G4double GetQValue ()
 

Detailed Description

Definition at line 41 of file G4NeutronHPLabAngularEnergy.hh.

Constructor & Destructor Documentation

G4NeutronHPLabAngularEnergy::G4NeutronHPLabAngularEnergy ( )
inline

Definition at line 45 of file G4NeutronHPLabAngularEnergy.hh.

46  {
47  theEnergies = 0;
48  theData = 0;
49  nCosTh = 0;
50  theSecondManager = 0;
51  }
G4NeutronHPLabAngularEnergy::~G4NeutronHPLabAngularEnergy ( )
inline

Definition at line 52 of file G4NeutronHPLabAngularEnergy.hh.

53  {
54  if(theEnergies != 0) delete [] theEnergies;
55  if(nCosTh != 0) delete [] nCosTh;
56  if(theData != 0)
57  {
58  for(G4int i=0; i<nEnergies; i++)
59  delete [] theData[i];
60  delete [] theData;
61  }
62  if(theSecondManager != 0) delete [] theSecondManager;
63  }
int G4int
Definition: G4Types.hh:78

Member Function Documentation

void G4NeutronHPLabAngularEnergy::Init ( std::istream &  aDataFile)
virtual

Implements G4VNeutronHPEnergyAngular.

Definition at line 46 of file G4NeutronHPLabAngularEnergy.cc.

References python.hepunit::eV, G4InterpolationManager::Init(), G4NeutronHPVector::Init(), and G4NeutronHPVector::SetLabel().

47 {
48  aDataFile >> nEnergies;
49  theManager.Init(aDataFile);
50  theEnergies = new G4double[nEnergies];
51  nCosTh = new G4int[nEnergies];
52  theData = new G4NeutronHPVector * [nEnergies];
53  theSecondManager = new G4InterpolationManager [nEnergies];
54  for(G4int i=0; i<nEnergies; i++)
55  {
56  aDataFile >> theEnergies[i];
57  theEnergies[i]*=eV;
58  aDataFile >> nCosTh[i];
59  theSecondManager[i].Init(aDataFile);
60  theData[i] = new G4NeutronHPVector[nCosTh[i]];
61  G4double label;
62  for(G4int ii=0; ii<nCosTh[i]; ii++)
63  {
64  aDataFile >> label;
65  theData[i][ii].SetLabel(label);
66  theData[i][ii].Init(aDataFile, eV);
67  }
68  }
69 }
void SetLabel(G4double aLabel)
void Init(G4int aScheme, G4int aRange)
void Init(std::istream &aDataFile, G4int total, G4double ux=1., G4double uy=1.)
int G4int
Definition: G4Types.hh:78
double G4double
Definition: G4Types.hh:76
G4double G4NeutronHPLabAngularEnergy::MeanEnergyOfThisInteraction ( )
inlinevirtual

Implements G4VNeutronHPEnergyAngular.

Definition at line 69 of file G4NeutronHPLabAngularEnergy.hh.

70  {
71  return currentMeanEnergy;
72  }
G4ReactionProduct * G4NeutronHPLabAngularEnergy::Sample ( G4double  anEnergy,
G4double  massCode,
G4double  mass 
)
virtual

Implements G4VNeutronHPEnergyAngular.

Definition at line 71 of file G4NeutronHPLabAngularEnergy.cc.

References G4Alpha::Alpha(), G4Deuteron::Deuteron(), G4Electron::Electron(), G4cout, G4endl, G4UniformRand, G4Gamma::Gamma(), G4NeutronHPVector::GetIntegral(), G4NeutronHPVector::GetInterpolationManager(), G4NeutronHPVector::GetLabel(), G4NeutronHPVector::GetMeanX(), G4InterpolationManager::GetScheme(), G4ReactionProduct::GetTotalMomentum(), G4NeutronHPVector::GetVectorLength(), G4NeutronHPVector::GetX(), G4NeutronHPVector::GetY(), G4He3::He3(), G4NeutronHPInterpolator::Interpolate(), G4NeutronHPInterpolator::Lin(), G4NeutronHPVector::Merge(), G4Neutron::Neutron(), G4Positron::Positron(), G4Proton::Proton(), G4NeutronHPVector::Sample(), G4NeutronHPVector::SetData(), G4ReactionProduct::SetDefinition(), G4NeutronHPVector::SetInterpolationManager(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4NeutronHPVector::SetX(), G4NeutronHPVector::SetY(), G4Triton::Triton(), python.hepunit::twopi, and test::x.

72 {
73  G4ReactionProduct * result = new G4ReactionProduct;
74  G4int Z = static_cast<G4int>(massCode/1000);
75  G4int A = static_cast<G4int>(massCode-1000*Z);
76 
77  if(massCode==0)
78  {
79  result->SetDefinition(G4Gamma::Gamma());
80  }
81  else if(A==0)
82  {
84  if(Z==1) result->SetDefinition(G4Positron::Positron());
85  }
86  else if(A==1)
87  {
89  if(Z==1) result->SetDefinition(G4Proton::Proton());
90  }
91  else if(A==2)
92  {
94  }
95  else if(A==3)
96  {
97  result->SetDefinition(G4Triton::Triton());
98  if(Z==2) result->SetDefinition(G4He3::He3());
99  }
100  else if(A==4)
101  {
102  result->SetDefinition(G4Alpha::Alpha());
103  if(Z!=2) throw G4HadronicException(__FILE__, __LINE__, "Unknown ion case 1");
104  }
105  else
106  {
107  throw G4HadronicException(__FILE__, __LINE__, "G4NeutronHPLabAngularEnergy: Unknown ion case 2");
108  }
109 
110  // get theta, E
111  G4double cosTh, secEnergy;
112  G4int i, it(0);
113  // find the energy bin
114  for(i=0; i<nEnergies; i++)
115  {
116  it = i;
117  if ( anEnergy < theEnergies[i] ) break;
118  }
119  //080808
120  //if ( it == 0 || it == nEnergies-1 ) // it marks the energy bin
121  if ( it == 0 ) // it marks the energy bin
122  {
123 if(it==0) G4cout << "080808 Something unexpected is happen in G4NeutronHPLabAngularEnergy " << G4endl;
124  // integrate the prob for each costh, and select theta.
125  G4double * running = new G4double [nCosTh[it]];
126  running[0]=0;
127  for(i=0;i<nCosTh[it]; i++)
128  {
129  if(i!=0) running[i] = running[i-1];
130  running[i]+=theData[it][i].GetIntegral(); // Does interpolated integral.
131  }
132  G4double random = running[nCosTh[it]-1]*G4UniformRand();
133  G4int ith(0);
134  for(i=0;i<nCosTh[it]; i++)
135  {
136  ith = i;
137  if(random<running[i]) break;
138  }
139  //080807
140  //if ( ith == 0 || ith == nCosTh[it]-1 ) //ith marks the angluar bin
141  if ( ith == 0 ) //ith marks the angluar bin
142  {
143  cosTh = theData[it][ith].GetLabel();
144  secEnergy = theData[it][ith].Sample();
145  currentMeanEnergy = theData[it][ith].GetMeanX();
146  }
147  else
148  {
149  //080808
150  //G4double x1 = theData[it][ith-1].GetIntegral();
151  //G4double x2 = theData[it][ith].GetIntegral();
152  G4double x1 = running [ ith-1 ];
153  G4double x2 = running [ ith ];
154  G4double x = random;
155  G4double y1 = theData[it][ith-1].GetLabel();
156  G4double y2 = theData[it][ith].GetLabel();
157  cosTh = theInt.Interpolate(theSecondManager[it].GetInverseScheme(ith),
158  x, x1, x2, y1, y2);
159  G4NeutronHPVector theBuff1;
160  theBuff1.SetInterpolationManager(theData[it][ith-1].GetInterpolationManager());
161  G4NeutronHPVector theBuff2;
162  theBuff2.SetInterpolationManager(theData[it][ith].GetInterpolationManager());
163  x1=y1;
164  x2=y2;
165  G4double y, mu;
166  for(i=0;i<theData[it][ith-1].GetVectorLength(); i++)
167  {
168  mu = theData[it][ith-1].GetX(i);
169  y1 = theData[it][ith-1].GetY(i);
170  y2 = theData[it][ith].GetY(mu);
171 
172  y = theInt.Interpolate(theSecondManager[it].GetScheme(ith),
173  cosTh, x1,x2,y1,y2);
174  theBuff1.SetData(i, mu, y);
175  }
176  for(i=0;i<theData[it][ith].GetVectorLength(); i++)
177  {
178  mu = theData[it][ith].GetX(i);
179  y1 = theData[it][ith-1].GetY(mu);
180  y2 = theData[it][ith].GetY(i);
181  y = theInt.Interpolate(theSecondManager[it].GetScheme(ith),
182  cosTh, x1,x2,y1,y2);
183  theBuff2.SetData(i, mu, y);
184  }
185  G4NeutronHPVector theStore;
186  theStore.Merge(&theBuff1, &theBuff2);
187  secEnergy = theStore.Sample();
188  currentMeanEnergy = theStore.GetMeanX();
189  }
190  delete [] running;
191  }
192  else // this is the small big else.
193  {
194  G4double x, x1, x2, y1, y2, y, tmp, E;
195  // integrate the prob for each costh, and select theta.
196  G4NeutronHPVector run1;
197  run1.SetY(0, 0.);
198  for(i=0;i<nCosTh[it-1]; i++)
199  {
200  if(i!=0) run1.SetY(i, run1.GetY(i-1));
201  run1.SetX(i, theData[it-1][i].GetLabel());
202  run1.SetY(i, run1.GetY(i)+theData[it-1][i].GetIntegral());
203  }
204  G4NeutronHPVector run2;
205  run2.SetY(0, 0.);
206  for(i=0;i<nCosTh[it]; i++)
207  {
208  if(i!=0) run2.SetY(i, run2.GetY(i-1));
209  run2.SetX(i, theData[it][i].GetLabel());
210  run2.SetY(i, run2.GetY(i)+theData[it][i].GetIntegral());
211  }
212  // get the distributions for the correct neutron energy
213  x = anEnergy;
214  x1 = theEnergies[it-1];
215  x2 = theEnergies[it];
216  G4NeutronHPVector thBuff1; // to be interpolated as run1.
217  thBuff1.SetInterpolationManager(theSecondManager[it-1]);
218  for(i=0; i<run1.GetVectorLength(); i++)
219  {
220  tmp = run1.GetX(i); //theta
221  y1 = run1.GetY(i); // integral
222  y2 = run2.GetY(tmp);
223  y = theInt.Interpolate(theManager.GetScheme(it), x, x1,x2,y1,y2);
224  thBuff1.SetData(i, tmp, y);
225  }
226  G4NeutronHPVector thBuff2;
227  thBuff2.SetInterpolationManager(theSecondManager[it]);
228  for(i=0; i<run2.GetVectorLength(); i++)
229  {
230  tmp = run2.GetX(i); //theta
231  y1 = run1.GetY(tmp); // integral
232  y2 = run2.GetY(i);
233  y = theInt.Lin(x, x1,x2,y1,y2);
234  thBuff2.SetData(i, tmp, y);
235  }
236  G4NeutronHPVector theThVec;
237  theThVec.Merge(&thBuff1 ,&thBuff2); // takes care of interpolation
238  G4double random = (theThVec.GetY(theThVec.GetVectorLength()-1)
239  -theThVec.GetY(0)) *G4UniformRand();
240  G4int ith(0);
241  for(i=1;i<theThVec.GetVectorLength(); i++)
242  {
243  ith = i;
244  if(random<theThVec.GetY(i)-theThVec.GetY(0)) break;
245  }
246  {
247  // calculate theta
248  G4double xx, xx1, xx2, yy1, yy2;
249  xx = random;
250  xx1 = theThVec.GetY(ith-1)-theThVec.GetY(0); // integrals
251  xx2 = theThVec.GetY(ith)-theThVec.GetY(0);
252  yy1 = theThVec.GetX(ith-1); // std::cos(theta)
253  yy2 = theThVec.GetX(ith);
254  cosTh = theInt.Interpolate(theSecondManager[it].GetScheme(ith),
255  xx, xx1,xx2,yy1,yy2);
256  }
257  G4int i1(0), i2(0);
258  // get the indixes of the vectors close to theta for low energy
259  // first it-1 !!!! i.e. low in energy
260  for(i=0; i<nCosTh[it-1]; i++)
261  {
262  i1 = i;
263  if(cosTh<theData[it-1][i].GetLabel()) break;
264  }
265  // now get the prob at this energy for the right theta value
266  x = cosTh;
267  x1 = theData[it-1][i1-1].GetLabel();
268  x2 = theData[it-1][i1].GetLabel();
269  G4NeutronHPVector theBuff1a;
270  theBuff1a.SetInterpolationManager(theData[it-1][i1-1].GetInterpolationManager());
271  for(i=0;i<theData[it-1][i1-1].GetVectorLength(); i++)
272  {
273  E = theData[it-1][i1-1].GetX(i);
274  y1 = theData[it-1][i1-1].GetY(i);
275  y2 = theData[it-1][i1].GetY(E);
276  y = theInt.Lin(x, x1,x2,y1,y2);
277  theBuff1a.SetData(i, E, y); // wrong E, right theta.
278  }
279  G4NeutronHPVector theBuff2a;
280  theBuff2a.SetInterpolationManager(theData[it-1][i1].GetInterpolationManager());
281  for(i=0;i<theData[it-1][i1].GetVectorLength(); i++)
282  {
283  E = theData[it-1][i1].GetX(i);
284  y1 = theData[it-1][i1-1].GetY(E);
285  y2 = theData[it-1][i1].GetY(i);
286  y = theInt.Lin(x, x1,x2,y1,y2);
287  theBuff2a.SetData(i, E, y); // wrong E, right theta.
288  }
289  G4NeutronHPVector theStore1;
290  theStore1.Merge(&theBuff1a, &theBuff2a); // wrong E, right theta, complete binning
291 
292  // get the indixes of the vectors close to theta for high energy
293  // then it !!!! i.e. high in energy
294  for(i=0; i<nCosTh[it]; i++)
295  {
296  i2 = i;
297  if(cosTh<theData[it][i2].GetLabel()) break;
298  } // sonderfaelle mit i1 oder i2 head on fehlen. @@@@@
299  x1 = theData[it][i2-1].GetLabel();
300  x2 = theData[it][i2].GetLabel();
301  G4NeutronHPVector theBuff1b;
302  theBuff1b.SetInterpolationManager(theData[it][i2-1].GetInterpolationManager());
303  for(i=0;i<theData[it][i2-1].GetVectorLength(); i++)
304  {
305  E = theData[it][i2-1].GetX(i);
306  y1 = theData[it][i2-1].GetY(i);
307  y2 = theData[it][i2].GetY(E);
308  y = theInt.Lin(x, x1,x2,y1,y2);
309  theBuff1b.SetData(i, E, y); // wrong E, right theta.
310  }
311  G4NeutronHPVector theBuff2b;
312  theBuff2b.SetInterpolationManager(theData[it][i2].GetInterpolationManager());
313  //080808 i1 -> i2
314  //for(i=0;i<theData[it][i1].GetVectorLength(); i++)
315  for(i=0;i<theData[it][i2].GetVectorLength(); i++)
316  {
317  //E = theData[it][i1].GetX(i);
318  //y1 = theData[it][i1-1].GetY(E);
319  //y2 = theData[it][i1].GetY(i);
320  E = theData[it][i2].GetX(i);
321  y1 = theData[it][i2-1].GetY(E);
322  y2 = theData[it][i2].GetY(i);
323  y = theInt.Lin(x, x1,x2,y1,y2);
324  theBuff2b.SetData(i, E, y); // wrong E, right theta.
325  }
326  G4NeutronHPVector theStore2;
327  theStore2.Merge(&theBuff1b, &theBuff2b); // wrong E, right theta, complete binning
328  // now get to the right energy.
329 
330  x = anEnergy;
331  x1 = theEnergies[it-1];
332  x2 = theEnergies[it];
333  G4NeutronHPVector theOne1;
335  for(i=0; i<theStore1.GetVectorLength(); i++)
336  {
337  E = theStore1.GetX(i);
338  y1 = theStore1.GetY(i);
339  y2 = theStore2.GetY(E);
340  y = theInt.Interpolate(theManager.GetScheme(it), x, x1,x2,y1,y2);
341  theOne1.SetData(i, E, y); // both correct
342  }
343  G4NeutronHPVector theOne2;
345  for(i=0; i<theStore2.GetVectorLength(); i++)
346  {
347  E = theStore2.GetX(i);
348  y1 = theStore1.GetY(E);
349  y2 = theStore2.GetY(i);
350  y = theInt.Interpolate(theManager.GetScheme(it), x, x1,x2,y1,y2);
351  theOne2.SetData(i, E, y); // both correct
352  }
353  G4NeutronHPVector theOne;
354  theOne.Merge(&theOne1, &theOne2); // both correct, complete binning
355 
356  secEnergy = theOne.Sample();
357  currentMeanEnergy = theOne.GetMeanX();
358  }
359 
360 // now do random direction in phi, and fill the result.
361 
362  result->SetKineticEnergy(secEnergy);
363 
364  G4double phi = twopi*G4UniformRand();
365  G4double theta = std::acos(cosTh);
366  G4double sinth = std::sin(theta);
367  G4double mtot = result->GetTotalMomentum();
368  G4ThreeVector tempVector(mtot*sinth*std::cos(phi), mtot*sinth*std::sin(phi), mtot*std::cos(theta) );
369  result->SetMomentum(tempVector);
370 
371  return result;
372 }
G4double GetY(G4double x)
G4int GetVectorLength() const
void SetInterpolationManager(const G4InterpolationManager &aManager)
G4double GetTotalMomentum() const
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
void Merge(G4NeutronHPVector *active, G4NeutronHPVector *passive)
G4double GetX(G4int i) const
void SetData(G4int i, G4double x, G4double y)
int G4int
Definition: G4Types.hh:78
G4double Interpolate(G4InterpolationScheme aScheme, G4double x, G4double x1, G4double x2, G4double y1, G4double y2) const
void SetY(G4int i, G4double x)
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4InterpolationManager & GetInterpolationManager() const
G4InterpolationScheme GetScheme(G4int index) const
static G4Triton * Triton()
Definition: G4Triton.cc:95
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetX(G4int i, G4double e)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
static G4Deuteron * Deuteron()
Definition: G4Deuteron.cc:94
static G4Positron * Positron()
Definition: G4Positron.cc:94
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
static G4Electron * Electron()
Definition: G4Electron.cc:94
#define G4endl
Definition: G4ios.hh:61
G4double Lin(G4double x, G4double x1, G4double x2, G4double y1, G4double y2)
static G4Alpha * Alpha()
Definition: G4Alpha.cc:89
double G4double
Definition: G4Types.hh:76
static G4He3 * He3()
Definition: G4He3.cc:94

The documentation for this class was generated from the following files: