Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4INCL::ParticleEntryChannel Class Reference

#include <G4INCLParticleEntryChannel.hh>

Inheritance diagram for G4INCL::ParticleEntryChannel:
G4INCL::IChannel

Public Member Functions

 ParticleEntryChannel (Nucleus *n, Particle *p)
 
virtual ~ParticleEntryChannel ()
 
FinalStategetFinalState ()
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 

Detailed Description

Definition at line 47 of file G4INCLParticleEntryChannel.hh.

Constructor & Destructor Documentation

G4INCL::ParticleEntryChannel::ParticleEntryChannel ( Nucleus n,
Particle p 
)

Definition at line 44 of file G4INCLParticleEntryChannel.cc.

45  :theNucleus(n), theParticle(p)
46  {}
const char * p
Definition: xmltok.h:285
const G4int n
G4INCL::ParticleEntryChannel::~ParticleEntryChannel ( )
virtual

Definition at line 48 of file G4INCLParticleEntryChannel.cc.

49  {}

Member Function Documentation

FinalState * G4INCL::ParticleEntryChannel::getFinalState ( )
virtual

Implements G4INCL::IChannel.

Definition at line 51 of file G4INCLParticleEntryChannel.cc.

References G4INCL::FinalState::addEnteringParticle(), G4INCL::ProjectileRemnant::computeExcitationEnergyExcept(), G4INCL::Particle::getA(), G4INCL::Particle::getEmissionQValueCorrection(), G4INCL::Particle::getEnergy(), G4INCL::NuclearPotential::INuclearPotential::getFermiEnergy(), G4INCL::Particle::getID(), G4INCL::Particle::getINCLMass(), G4INCL::Particle::getKineticEnergy(), G4INCL::Particle::getMomentum(), G4INCL::Nucleus::getPotential(), G4INCL::Nucleus::getProjectileRemnant(), G4INCL::ParticleTable::getTableMass, G4INCL::Particle::getTableMass(), G4INCL::Particle::getZ(), INCL_DEBUG, G4INCL::Particle::isNucleon(), G4INCL::Nucleus::isNucleusNucleusCollision(), G4INCL::FinalState::makeParticleBelowFermi(), G4INCL::FinalState::makeParticleBelowZero(), G4INCL::Particle::print(), G4INCL::ProjectileRemnant::removeParticle(), and G4INCL::FinalState::setTotalEnergyBeforeInteraction().

51  {
52  // Behaves slightly differency if a third body (the projectile) is present
53  G4bool isNN = theNucleus->isNucleusNucleusCollision();
54 
55  /* Corrections to the energy of the entering nucleon
56  *
57  * In particle-nucleus reactions, the goal of this correction is to satisfy
58  * energy conservation in particle-nucleus reactions using real particle
59  * and nuclear masses.
60  *
61  * In nucleus-nucleus reactions, in addition to the above, the correction
62  * is determined by a model for the excitation energy of the
63  * quasi-projectile (QP). The energy of the entering nucleon is such that
64  * the QP excitation energy, as determined by conservation, is what given
65  * by our model.
66  *
67  * Possible choices for the correction (or, equivalently, for the QP
68  * excitation energy):
69  *
70  * 1. the correction is 0. (same as in particle-nucleus);
71  * 2. the correction is the separation energy of the entering nucleon in
72  * the current QP;
73  * 3. the QP excitation energy is given by A. Boudard's algorithm, as
74  * implemented in INCL4.2-HI/Geant4.
75  * 4. the QP excitation energy vanishes.
76  *
77  * Ideally, the QP excitation energy should always be >=0. Algorithms 1.
78  * and 2. do not guarantee this, although violations to the rule seem to be
79  * more severe for 1. than for 2.. Algorithms 3. and 4., by construction,
80  * yields non-negative QP excitation energies.
81  */
82  G4double theCorrection;
83  if(isNN) {
84 // assert(theParticle->isNucleon());
85  ProjectileRemnant * const projectileRemnant = theNucleus->getProjectileRemnant();
86 // assert(projectileRemnant);
87 
88  // No correction (model 1. above)
89  /*
90  theCorrection = theParticle->getEmissionQValueCorrection(
91  theNucleus->getA() + theParticle->getA(),
92  theNucleus->getZ() + theParticle->getZ())
93  + theParticle->getTableMass() - theParticle->getINCLMass();
94  const G4double theProjectileCorrection = 0.;
95  */
96 
97  // Correct the energy of the entering particle for the Q-value of the
98  // emission from the projectile (model 2. above)
99  /*
100  theCorrection = theParticle->getTransferQValueCorrection(
101  projectileRemnant->getA(), projectileRemnant->getZ(),
102  theNucleus->getA(), theNucleus->getZ());
103  G4double theProjectileCorrection;
104  if(projectileRemnant->getA()>theParticle->getA()) { // if there are any particles left
105  // Compute the projectile Q-value (to be used as a correction to the
106  // other components of the projectile remnant)
107  theProjectileCorrection = ParticleTable::getTableQValue(
108  projectileRemnant->getA() - theParticle->getA(),
109  projectileRemnant->getZ() - theParticle->getZ(),
110  theParticle->getA(),
111  theParticle->getZ());
112  } else
113  theProjectileCorrection = 0.;
114  */
115 
116  // Fix the correction in such a way that the quasi-projectile excitation
117  // energy is given by A. Boudard's INCL4.2-HI model (model 3. above).
118  const G4double theProjectileExcitationEnergy =
119  (projectileRemnant->getA()-theParticle->getA()>1) ?
120  (projectileRemnant->computeExcitationEnergyExcept(theParticle->getID())) :
121  0.;
122  // Set the projectile excitation energy to zero (cold quasi-projectile,
123  // model 4. above).
124  // const G4double theProjectileExcitationEnergy = 0.;
125  // The part that follows is common to model 3. and 4.
126  const G4double theProjectileEffectiveMass =
127  ParticleTable::getTableMass(projectileRemnant->getA() - theParticle->getA(), projectileRemnant->getZ() - theParticle->getZ())
128  + theProjectileExcitationEnergy;
129  const ThreeVector &theProjectileMomentum = projectileRemnant->getMomentum() - theParticle->getMomentum();
130  const G4double theProjectileEnergy = std::sqrt(theProjectileMomentum.mag2() + theProjectileEffectiveMass*theProjectileEffectiveMass);
131  const G4double theProjectileCorrection = theProjectileEnergy - (projectileRemnant->getEnergy() - theParticle->getEnergy());
132  theCorrection = theParticle->getEmissionQValueCorrection(
133  theNucleus->getA() + theParticle->getA(),
134  theNucleus->getZ() + theParticle->getZ())
135  + theParticle->getTableMass() - theParticle->getINCLMass()
136  + theProjectileCorrection;
137  // end of part common to model 3. and 4.
138 
139 
140  projectileRemnant->removeParticle(theParticle, theProjectileCorrection);
141  } else {
142  const G4int ACN = theNucleus->getA() + theParticle->getA();
143  const G4int ZCN = theNucleus->getZ() + theParticle->getZ();
144  // Correction to the Q-value of the entering particle
145  theCorrection = theParticle->getEmissionQValueCorrection(ACN,ZCN);
146  INCL_DEBUG("The following Particle enters with correction " << theCorrection
147  << theParticle->print() << std::endl);
148  }
149 
150  const G4double energyBefore = theParticle->getEnergy() - theCorrection;
151  G4bool success = particleEnters(theCorrection);
152  FinalState *fs = new FinalState();
153  fs->addEnteringParticle(theParticle);
154 
155  if(!success) {
156  fs->makeParticleBelowZero();
157  } else if(theParticle->isNucleon() &&
158  theParticle->getKineticEnergy()<theNucleus->getPotential()->getFermiEnergy(theParticle)) {
159  // If the participant is a nucleon entering below its Fermi energy, force a
160  // compound nucleus
161  fs->makeParticleBelowFermi();
162  }
163 
164  fs->setTotalEnergyBeforeInteraction(energyBefore);
165  return fs;
166  }
G4int getA() const
Returns the baryon number.
G4bool isNucleusNucleusCollision() const
Is it a nucleus-nucleus collision?
const G4INCL::ThreeVector & getMomentum() const
std::string print() const
G4double getEnergy() const
G4double getINCLMass() const
Get the INCL particle mass.
int G4int
Definition: G4Types.hh:78
G4double getFermiEnergy(const Particle *const p) const
Return the Fermi energy for a particle.
bool G4bool
Definition: G4Types.hh:79
G4int getZ() const
Returns the charge number.
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
G4bool isNucleon() const
virtual G4double getTableMass() const
Get the tabulated particle mass.
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
G4double getKineticEnergy() const
Get the particle kinetic energy.
double G4double
Definition: G4Types.hh:76
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
#define INCL_DEBUG(x)
long getID() const

The documentation for this class was generated from the following files: