Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4ElasticHNScattering Class Reference

#include <G4ElasticHNScattering.hh>

Public Member Functions

 G4ElasticHNScattering ()
 
virtual ~G4ElasticHNScattering ()
 
virtual G4bool ElasticScattering (G4VSplitableHadron *aPartner, G4VSplitableHadron *bPartner, G4FTFParameters *theParameters) const
 

Detailed Description

Definition at line 50 of file G4ElasticHNScattering.hh.

Constructor & Destructor Documentation

G4ElasticHNScattering::G4ElasticHNScattering ( )

Definition at line 56 of file G4ElasticHNScattering.cc.

56 {}
G4ElasticHNScattering::~G4ElasticHNScattering ( )
virtual

Definition at line 218 of file G4ElasticHNScattering.cc.

218 {}

Member Function Documentation

G4bool G4ElasticHNScattering::ElasticScattering ( G4VSplitableHadron aPartner,
G4VSplitableHadron bPartner,
G4FTFParameters theParameters 
) const
virtual

Definition at line 61 of file G4ElasticHNScattering.cc.

References CLHEP::HepLorentzVector::boostVector(), G4VSplitableHadron::Get4Momentum(), G4FTFParameters::GetAvaragePt2ofElasticScattering(), G4VSplitableHadron::GetDefinition(), G4ParticleDefinition::GetPDGMass(), G4VSplitableHadron::GetPosition(), G4VSplitableHadron::GetTimeOfCreation(), G4VSplitableHadron::IncrementCollisionCount(), CLHEP::HepLorentzVector::mag(), CLHEP::HepLorentzVector::mag2(), CLHEP::HepLorentzVector::rotateY(), CLHEP::HepLorentzVector::rotateZ(), G4VSplitableHadron::Set4Momentum(), G4VSplitableHadron::SetPosition(), G4VSplitableHadron::SetTimeOfCreation(), sqr(), CLHEP::HepLorentzRotation::transform(), CLHEP::HepLorentzVector::transform(), CLHEP::HepLorentzVector::vect(), and CLHEP::HepLorentzVector::z().

Referenced by G4DiffractiveExcitation::ExciteParticipants().

63  {
64  projectile->IncrementCollisionCount( 1 );
65  target->IncrementCollisionCount( 1 );
66 
67  // Projectile parameters
68  G4LorentzVector Pprojectile = projectile->Get4Momentum();
69  if ( Pprojectile.z() < 0.0 ) return false;
70  G4bool PutOnMassShell( false );
71  G4double M0projectile = Pprojectile.mag();
72  if ( M0projectile < projectile->GetDefinition()->GetPDGMass() ) {
73  PutOnMassShell = true;
74  M0projectile = projectile->GetDefinition()->GetPDGMass();
75  }
76  G4double M0projectile2 = M0projectile * M0projectile;
77  G4double AveragePt2 = theParameters->GetAvaragePt2ofElasticScattering();
78 
79  // Target parameters
80  G4LorentzVector Ptarget = target->Get4Momentum();
81  G4double M0target = Ptarget.mag();
82  if ( M0target < target->GetDefinition()->GetPDGMass() ) {
83  PutOnMassShell = true;
84  M0target = target->GetDefinition()->GetPDGMass();
85  }
86  G4double M0target2 = M0target * M0target;
87 
88  // Transform momenta to cms and then rotate parallel to z axis;
89  G4LorentzVector Psum;
90  Psum = Pprojectile + Ptarget;
91  G4LorentzRotation toCms( -1*Psum.boostVector() );
92  G4LorentzVector Ptmp = toCms*Pprojectile;
93  if ( Ptmp.pz() <= 0.0 ) return false;
94  // "String" moving backwards in CMS, abort collision !
95  //G4cout << " abort Collision! " << G4endl;
96  toCms.rotateZ( -1*Ptmp.phi() );
97  toCms.rotateY( -1*Ptmp.theta() );
98  G4LorentzRotation toLab( toCms.inverse() );
99  Pprojectile.transform( toCms );
100  Ptarget.transform( toCms );
101 
102  // Putting on mass-on-shell, if needed
103  G4double PZcms2, PZcms;
104  G4double S = Psum.mag2();
105  G4double SqrtS = std::sqrt( S );
106  if ( SqrtS < M0projectile + M0target ) return false;
107 
108  PZcms2 = ( S*S + sqr( M0projectile2 ) + sqr( M0target2 )
109  - 2*S*M0projectile2 - 2*S*M0target2 - 2*M0projectile2*M0target2 ) / 4.0 / S;
110 
111  if ( PZcms2 < 0.0 ) { // It can be in an interaction with off-shell nuclear nucleon
112  if ( M0projectile > projectile->GetDefinition()->GetPDGMass() ) {
113  // An attempt to de-excite the projectile
114  // It is assumed that the target is in the ground state
115  M0projectile = projectile->GetDefinition()->GetPDGMass();
116  M0projectile2 = M0projectile * M0projectile;
117  PZcms2= ( S*S + sqr( M0projectile2 ) + sqr( M0target2 )
118  - 2*S*M0projectile2 - 2*S*M0target2 - 2*M0projectile2*M0target2 ) / 4.0 / S;
119  if ( PZcms2 < 0.0 ) { return false; } // Nonsuccesful attempt to de-excitate the projectile
120  } else {
121  return false; // The projectile was not excited, but the energy was too low to put
122  // the target nucleon on mass-shell
123  }
124  }
125 
126  PZcms = std::sqrt( PZcms2 );
127 
128  if ( PutOnMassShell ) {
129  if ( Pprojectile.z() > 0.0 ) {
130  Pprojectile.setPz( PZcms );
131  Ptarget.setPz( -PZcms );
132  } else {
133  Pprojectile.setPz( -PZcms );
134  Ptarget.setPz( PZcms );
135  };
136  Pprojectile.setE( std::sqrt( M0projectile2 + Pprojectile.x() * Pprojectile.x() +
137  Pprojectile.y() * Pprojectile.y() + PZcms2 ) );
138  Ptarget.setE( std::sqrt( M0target2 + Ptarget.x() * Ptarget.x() + Ptarget.y() * Ptarget.y() +
139  PZcms2 ) );
140  }
141 
142  G4double maxPtSquare = PZcms2;
143 
144  // Now we can calculate the transferred Pt
145  G4double Pt2;
146  G4double ProjMassT2, ProjMassT;
147  G4double TargMassT2, TargMassT;
148  G4LorentzVector Qmomentum;
149 
150  do {
151  Qmomentum = G4LorentzVector( GaussianPt( AveragePt2, maxPtSquare ), 0.0 );
152  Pt2 = G4ThreeVector( Qmomentum.vect() ).mag2();
153  ProjMassT2 = M0projectile2 + Pt2;
154  ProjMassT = std::sqrt( ProjMassT2 );
155  TargMassT2 = M0target2 + Pt2;
156  TargMassT = std::sqrt( TargMassT2 );
157  } while ( SqrtS < ProjMassT + TargMassT );
158 
159  PZcms2 = ( S*S + sqr( ProjMassT2 ) + sqr( TargMassT2 )
160  - 2.0*S*ProjMassT2 - 2.0*S*TargMassT2 - 2.0*ProjMassT2*TargMassT2 ) / 4.0 / S;
161 
162  if ( PZcms2 < 0.0 ) { PZcms2 = 0.0; }; // to avoid the exactness problem
163  PZcms = std::sqrt( PZcms2 );
164  Pprojectile.setPz( PZcms );
165  Ptarget.setPz( -PZcms );
166  Pprojectile += Qmomentum;
167  Ptarget -= Qmomentum;
168 
169  // Transform back and update SplitableHadron Participant.
170  Pprojectile.transform( toLab );
171  Ptarget.transform( toLab );
172 
173  // Calculation of the creation time
174  projectile->SetTimeOfCreation( target->GetTimeOfCreation() );
175  projectile->SetPosition( target->GetPosition() );
176 
177  // Creation time and position of target nucleon were determined at
178  // ReggeonCascade() of G4FTFModel
179 
180  projectile->Set4Momentum( Pprojectile );
181  target->Set4Momentum( Ptarget );
182 
183  //projectile->IncrementCollisionCount( 1 );
184  //target->IncrementCollisionCount( 1 );
185 
186  return true;
187 }
Hep3Vector boostVector() const
CLHEP::Hep3Vector G4ThreeVector
G4double GetAvaragePt2ofElasticScattering()
const XML_Char * target
HepLorentzVector & rotateZ(double)
Hep3Vector vect() const
double mag() const
bool G4bool
Definition: G4Types.hh:79
HepLorentzRotation & transform(const HepBoost &b)
double mag2() const
HepLorentzVector & rotateY(double)
HepLorentzVector & transform(const HepRotation &)
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
CLHEP::HepLorentzVector G4LorentzVector

The documentation for this class was generated from the following files: