Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions
G4E1SingleProbability1 Class Reference

#include <G4E1SingleProbability1.hh>

Inheritance diagram for G4E1SingleProbability1:
G4VEmissionProbability

Public Member Functions

 G4E1SingleProbability1 ()
 
virtual ~G4E1SingleProbability1 ()
 
G4double EmissionProbability (const G4Fragment &frag, G4double excite)
 
G4double EmissionProbDensity (const G4Fragment &frag, G4double ePhoton)
 
- Public Member Functions inherited from G4VEmissionProbability
 G4VEmissionProbability ()
 
virtual ~G4VEmissionProbability ()
 
void SetOPTxs (G4int opt)
 
void UseSICB (G4bool use)
 

Additional Inherited Members

- Protected Attributes inherited from G4VEmissionProbability
G4int OPTxs
 
G4bool useSICB
 
G4PowfG4pow
 
G4PairingCorrectionfPairCorr
 
G4EvaporationLevelDensityParametertheEvapLDPptr
 

Detailed Description

Definition at line 38 of file G4E1SingleProbability1.hh.

Constructor & Destructor Documentation

G4E1SingleProbability1::G4E1SingleProbability1 ( )

Definition at line 41 of file G4E1SingleProbability1.cc.

42 {}
G4E1SingleProbability1::~G4E1SingleProbability1 ( )
virtual

Definition at line 44 of file G4E1SingleProbability1.cc.

45 {}

Member Function Documentation

G4double G4E1SingleProbability1::EmissionProbability ( const G4Fragment frag,
G4double  excite 
)
virtual

Implements G4VEmissionProbability.

Definition at line 121 of file G4E1SingleProbability1.cc.

References G4Fragment::GetExcitationEnergy().

123 {
124 
125  // From nuclear fragment properties and the excitation energy, calculate
126  // the probability for photon evaporation down to the level
127  // Uexcite-exciteE.
128  // fragment = nuclear fragment BEFORE de-excitation
129 
130  G4double theProb = 0.0;
131 
132  G4double ScaleFactor = 1.0; // playing with scale factors
133 
134  G4double Uexcite = frag.GetExcitationEnergy();
135  G4double Uafter = Uexcite - exciteE;
136 
137  static const G4double normC = 3.0;
138 
139  G4double upperLim = Uexcite;
140  G4double lowerLim = Uafter;
141  static const G4int numIters = 25;
142 
143  // Need to integrate EmissionProbDensity from lowerLim to upperLim
144  // and multiply by normC
145 
146  G4double integ = normC *
147  EmissionIntegration(frag,exciteE,lowerLim,upperLim,numIters);
148 
149  if(integ > 0.0) theProb = integ;
150 
151  return theProb * ScaleFactor;
152 
153 }
int G4int
Definition: G4Types.hh:78
double G4double
Definition: G4Types.hh:76
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:255
G4double G4E1SingleProbability1::EmissionProbDensity ( const G4Fragment frag,
G4double  ePhoton 
)

Definition at line 50 of file G4E1SingleProbability1.cc.

References test::a, G4Fragment::GetA_asInt(), G4Fragment::GetExcitationEnergy(), G4Pow::GetInstance(), G4Fragment::GetZ_asInt(), python.hepunit::hbarc, G4ConstantLevelDensityParameter::LevelDensityParameter(), python.hepunit::MeV, python.hepunit::millibarn, python.hepunit::pi, and G4Pow::powZ().

52 {
53 
54  // Calculate the probability density here
55 
56  // From nuclear fragment properties and the excitation energy, calculate
57  // the probability density for photon evaporation from U to U - exciteE
58  // (U = nucleus excitation energy, exciteE = total evaporated photon
59  // energy).
60  // fragment = nuclear fragment BEFORE de-excitation
61 
62  G4double theProb = 0.0;
63 
64  G4int Afrag = frag.GetA_asInt();
65  G4int Zfrag = frag.GetZ_asInt();
66  G4double Uexcite = frag.GetExcitationEnergy();
67 
68  if( (Uexcite-exciteE) < 0.0 || exciteE < 0 || Uexcite <= 0) return theProb;
69 
70  // Need a level density parameter.
71  // For now, just use the constant approximation (not reliable near magic
72  // nuclei).
73 
75  G4double aLevelDensityParam = a.LevelDensityParameter(Afrag,Zfrag,Uexcite);
76 
77  G4double levelDensBef = std::exp(2.0*std::sqrt(aLevelDensityParam*Uexcite));
78  G4double levelDensAft = std::exp(2.0*std::sqrt(aLevelDensityParam*(Uexcite-exciteE)));
79 
80  // Now form the probability density
81 
82  // Define constants for the photoabsorption cross-section (the reverse
83  // process of our de-excitation)
84 
85  G4double sigma0 = 2.5 * Afrag * millibarn; // millibarns
86 
87  G4double Egdp = (40.3 / G4Pow::GetInstance()->powZ(Afrag,0.2) )*MeV;
88  G4double GammaR = 0.30 * Egdp;
89 
90  static const G4double normC = 1.0 / ((pi * hbarc)*(pi * hbarc));
91 
92  // CD
93  //cout<<" PROB TESTS "<<G4endl;
94  //cout<<" hbarc = "<<hbarc<<G4endl;
95  //cout<<" pi = "<<pi<<G4endl;
96  //cout<<" Uexcite, exciteE = "<<Uexcite<<" "<<exciteE<<G4endl;
97  //cout<<" Uexcite, exciteE = "<<Uexcite*MeV<<" "<<exciteE*MeV<<G4endl;
98  //cout<<" lev density param = "<<aLevelDensityParam<<G4endl;
99  //cout<<" level densities = "<<levelDensBef<<" "<<levelDensAft<<G4endl;
100  //cout<<" sigma0 = "<<sigma0<<G4endl;
101  //cout<<" Egdp, GammaR = "<<Egdp<<" "<<GammaR<<G4endl;
102  //cout<<" normC = "<<normC<<G4endl;
103 
104  G4double numerator = sigma0 * exciteE*exciteE * GammaR*GammaR;
105  G4double denominator = (exciteE*exciteE - Egdp*Egdp)*
106  (exciteE*exciteE - Egdp*Egdp) + GammaR*GammaR*exciteE*exciteE;
107 
108  G4double sigmaAbs = numerator/denominator;
109 
110  theProb = normC * sigmaAbs * exciteE*exciteE *
111  levelDensAft/levelDensBef;
112 
113  // CD
114  //cout<<" sigmaAbs = "<<sigmaAbs<<G4endl;
115  //cout<<" Probability = "<<theProb<<G4endl;
116 
117  return theProb;
118 
119 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:53
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
G4int GetA_asInt() const
Definition: G4Fragment.hh:238
G4int GetZ_asInt() const
Definition: G4Fragment.hh:243
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:258
G4double LevelDensityParameter(const G4int A, const G4int, const G4double) const
double G4double
Definition: G4Types.hh:76
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:255

The documentation for this class was generated from the following files: