#include <G4Bessel.hh>
Definition at line 66 of file G4Bessel.hh.
Definition at line 73 of file G4Bessel.cc.
Referenced by K0().
93 if (std::fabs(
x) < 3.75)
96 I = P1+y*(P2+y*(P3+y*(P4+y*(P5+y*(P6+y*P7)))));
102 I = std::exp(ax) / std::sqrt(ax) *
103 (Q1+y*(Q2+y*(Q3+y*(Q4+y*(Q5+y*(Q6+y*(Q7+y*(Q8+y*Q9))))))));
Definition at line 143 of file G4Bessel.cc.
Referenced by K1().
163 if (std::fabs(
x) < 3.75)
167 I = ax*(P1+y*(P2+y*(P3+y*(P4+y*(P5+y*(P6+y*P7))))));
173 I = std::exp(ax) / std::sqrt(ax) *
174 (Q1+y*(Q2+y*(Q3+y*(Q4+y*(Q5+y*(Q6+y*(Q7+y*(Q8+y*Q9))))))));
Definition at line 109 of file G4Bessel.cc.
References I0(), and test::x.
130 K = (-std::log(
x/2.0)) *
I0(
x) +
131 P1+y*(P2+y*(P3+y*(P4+y*(P5+y*(P6+y*P7)))));
136 K = std::exp(-
x) / std::sqrt(
x) *
137 (Q1+y*(Q2+y*(Q3+y*(Q4+y*(Q5+y*(Q6+y*Q7))))));
Definition at line 181 of file G4Bessel.cc.
References I1(), and test::x.
202 K = std::log(
x/2.0)*
I1(
x) + 1.0/
x *
203 (P1+y*(P2+y*(P3+y*(P4+y*(P5+y*(P6+y*P7))))));
208 K = std::exp(-
x) / std::sqrt(
x) *
209 (Q1+y*(Q2+y*(Q3+y*(Q4+y*(Q5+y*(Q6+y*Q7))))));
Definition at line 215 of file G4Bessel.cc.
References A10, A11, python.hepunit::twopi, and test::x.
Referenced by pK0(), and pK1().
217 const G4double A0 = 0.1250000000000E+00,
218 A1 = 7.0312500000000E-02,
219 A2 = 7.3242187500000E-02,
220 A3 = 1.1215209960938E-01,
221 A4 = 2.2710800170898E-01,
222 A5 = 5.7250142097473E-01,
223 A6 = 1.7277275025845E+00,
224 A7 = 6.0740420012735E+00,
225 A8 = 2.4380529699556E+01,
226 A9 = 1.1001714026925E+02,
227 A10 = 5.5133589612202E+02,
228 A11 = 3.0380905109224E+03;
240 for (
G4int i=1; i<101; i++)
242 q *= 0.25 * y / i / i;
244 if (std::abs(q/I) < 1.0E-15)
break;
250 I = std::exp(x) / std::sqrt(
twopi*x) *
251 (1.0 + y*(A0+y*(A1+y*(A2+y*(A3+y*(A4+y*(A5+y*(A6+y*(A7+y*(A8+y*(A9+y*(
A10+y*
A11))))))))))));
Definition at line 258 of file G4Bessel.cc.
References A10, A11, python.hepunit::twopi, and test::x.
Referenced by pK1().
260 const G4double A0 = -0.3750000000000E+00,
261 A1 = -1.1718750000000E-01,
262 A2 = -1.0253906250000E-01,
263 A3 = -1.4419555664063E-01,
264 A4 = -2.775764465332E-01,
265 A5 = -6.7659258842468E-01,
266 A6 = -1.9935317337513E+00,
267 A7 = -6.8839142681099E+00,
268 A8 = -2.7248827311269E+01,
269 A9 = -1.2159789187654E+02,
270 A10 = -6.0384407670507E+02,
271 A11 = -3.3022722944809E+03;
283 for (
G4int i=1; i<101; i++)
285 q *= 0.25 * y / i / (i+1.0);
287 if (std::abs(q/I) < 1.0E-15)
break;
295 I = std::exp(x) / std::sqrt(
twopi*x) *
296 (1.0 + y*(A0+y*(A1+y*(A2+y*(A3+y*(A4+y*(A5+y*(A6+y*(A7+y*(A8+y*(A9+y*(
A10+y*
A11))))))))))));
Definition at line 303 of file G4Bessel.cc.
References pI0(), and test::x.
Referenced by pK1().
305 const G4double A0 = 0.1250000000000E+00,
306 A1 = 0.2109375000000E+00,
307 A2 = 1.0986328125000E+00,
308 A3 = 1.1775970458984E+01,
309 A4 = 2.1461706161499E+02,
310 A5 = 5.9511522710323E+03,
311 A6 = 2.3347645606175E+05,
312 A7 = 1.2312234987631E+07;
322 G4double C = -std::log(x/2.0) - 0.5772156649015329;
325 for (
G4int i=1; i<51; i++)
327 q *= 0.25 * y / i / i;
336 K = 0.5 / x /
pI0(x) *
337 (1.0 + y*(A0+y*(A1+y*(A2+y*(A3+y*(A4+y*(A5+y*(A6+y*A7))))))));
The documentation for this class was generated from the following files: