Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4VCrossSectionHandler.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4VCrossSectionHandler.cc 66241 2012-12-13 18:34:42Z gunter $
28 //
29 // Author: Maria Grazia Pia (Maria.Grazia.Pia@cern.ch)
30 //
31 // History:
32 // -----------
33 // 1 Aug 2001 MGP Created
34 // 09 Oct 2001 VI Add FindValue with 3 parameters
35 // + NumberOfComponents
36 // 19 Jul 2002 VI Create composite data set for material
37 // 21 Jan 2003 VI Cut per region
38 //
39 // 15 Jul 2009 Nicolas A. Karakatsanis
40 //
41 // - LoadNonLogData method was created to load only the non-logarithmic data from G4EMLOW
42 // dataset. It is essentially performing the data loading operations as in the past.
43 //
44 // - LoadData method was revised in order to calculate the logarithmic values of the data
45 // It retrieves the data values from the G4EMLOW data files but, then, calculates the
46 // respective log values and loads them to seperate data structures.
47 // The EM data sets, initialized this way, contain both non-log and log values.
48 // These initialized data sets can enhance the computing performance of data interpolation
49 // operations
50 //
51 // - BuildMeanFreePathForMaterials method was also revised in order to calculate the
52 // logarithmic values of the loaded data.
53 // It generates the data values and, then, calculates the respective log values which
54 // later load to seperate data structures.
55 // The EM data sets, initialized this way, contain both non-log and log values.
56 // These initialized data sets can enhance the computing performance of data interpolation
57 // operations
58 //
59 // - LoadShellData method was revised in order to eliminate the presence of a potential
60 // memory leak originally identified by Riccardo Capra.
61 // Riccardo Capra Original Comment
62 // Riccardo Capra <capra@ge.infn.it>: PLEASE CHECK THE FOLLOWING PIECE OF CODE
63 // "energies" AND "data" G4DataVector ARE ALLOCATED, FILLED IN AND NEVER USED OR
64 // DELETED. WHATSMORE LOADING FILE OPERATIONS WERE DONE BY G4ShellEMDataSet
65 // EVEN BEFORE THE CHANGES I DID ON THIS FILE. SO THE FOLLOWING CODE IN MY
66 // OPINION SHOULD BE USELESS AND SHOULD PRODUCE A MEMORY LEAK.
67 //
68 //
69 // -------------------------------------------------------------------
70 
72 #include "G4VDataSetAlgorithm.hh"
73 #include "G4LogLogInterpolation.hh"
74 #include "G4VEMDataSet.hh"
75 #include "G4EMDataSet.hh"
76 #include "G4CompositeEMDataSet.hh"
77 #include "G4ShellEMDataSet.hh"
78 #include "G4ProductionCutsTable.hh"
79 #include "G4Material.hh"
80 #include "G4Element.hh"
81 #include "Randomize.hh"
82 #include <map>
83 #include <vector>
84 #include <fstream>
85 #include <sstream>
86 
87 
89 {
90  crossSections = 0;
91  interpolation = 0;
92  Initialise();
94 }
95 
96 
98  G4double minE,
99  G4double maxE,
100  G4int bins,
101  G4double unitE,
102  G4double unitData,
103  G4int minZ,
104  G4int maxZ)
105  : interpolation(algorithm), eMin(minE), eMax(maxE), nBins(bins),
106  unit1(unitE), unit2(unitData), zMin(minZ), zMax(maxZ)
107 {
108  crossSections = 0;
109  ActiveElements();
110 }
111 
113 {
114  delete interpolation;
115  interpolation = 0;
116  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::iterator pos;
117 
118  for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
119  {
120  // The following is a workaround for STL ObjectSpace implementation,
121  // which does not support the standard and does not accept
122  // the syntax pos->second
123  // G4VEMDataSet* dataSet = pos->second;
124  G4VEMDataSet* dataSet = (*pos).second;
125  delete dataSet;
126  }
127 
128  if (crossSections != 0)
129  {
130  size_t n = crossSections->size();
131  for (size_t i=0; i<n; i++)
132  {
133  delete (*crossSections)[i];
134  }
135  delete crossSections;
136  crossSections = 0;
137  }
138 }
139 
141  G4double minE, G4double maxE,
142  G4int numberOfBins,
143  G4double unitE, G4double unitData,
144  G4int minZ, G4int maxZ)
145 {
146  if (algorithm != 0)
147  {
148  delete interpolation;
149  interpolation = algorithm;
150  }
151  else
152  {
153  delete interpolation;
154  interpolation = CreateInterpolation();
155  }
156 
157  eMin = minE;
158  eMax = maxE;
159  nBins = numberOfBins;
160  unit1 = unitE;
161  unit2 = unitData;
162  zMin = minZ;
163  zMax = maxZ;
164 }
165 
167 {
168  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
169 
170  for (pos = dataMap.begin(); pos != dataMap.end(); pos++)
171  {
172  // The following is a workaround for STL ObjectSpace implementation,
173  // which does not support the standard and does not accept
174  // the syntax pos->first or pos->second
175  // G4int z = pos->first;
176  // G4VEMDataSet* dataSet = pos->second;
177  G4int z = (*pos).first;
178  G4VEMDataSet* dataSet = (*pos).second;
179  G4cout << "---- Data set for Z = "
180  << z
181  << G4endl;
182  dataSet->PrintData();
183  G4cout << "--------------------------------------------------" << G4endl;
184  }
185 }
186 
188 {
189  size_t nZ = activeZ.size();
190  for (size_t i=0; i<nZ; i++)
191  {
192  G4int Z = (G4int) activeZ[i];
193 
194  // Build the complete string identifying the file with the data set
195 
196  char* path = getenv("G4LEDATA");
197  if (!path)
198  {
199  G4Exception("G4VCrossSectionHandler::LoadData",
200  "em0006",FatalException,"G4LEDATA environment variable not set");
201  return;
202  }
203 
204  std::ostringstream ost;
205  ost << path << '/' << fileName << Z << ".dat";
206  std::ifstream file(ost.str().c_str());
207  std::filebuf* lsdp = file.rdbuf();
208 
209  if (! (lsdp->is_open()) )
210  {
211  G4String excep = "data file: " + ost.str() + " not found";
212  G4Exception("G4VCrossSectionHandler::LoadData",
213  "em0003",FatalException,excep);
214  }
215  G4double a = 0;
216  G4int k = 0;
217  G4int nColumns = 2;
218 
219  G4DataVector* orig_reg_energies = new G4DataVector;
220  G4DataVector* orig_reg_data = new G4DataVector;
221  G4DataVector* log_reg_energies = new G4DataVector;
222  G4DataVector* log_reg_data = new G4DataVector;
223 
224  do
225  {
226  file >> a;
227 
228  if (a==0.) a=1e-300;
229 
230  // The file is organized into four columns:
231  // 1st column contains the values of energy
232  // 2nd column contains the corresponding data value
233  // The file terminates with the pattern: -1 -1
234  // -2 -2
235  //
236  if (a != -1 && a != -2)
237  {
238  if (k%nColumns == 0)
239  {
240  orig_reg_energies->push_back(a*unit1);
241  log_reg_energies->push_back(std::log10(a)+std::log10(unit1));
242  }
243  else if (k%nColumns == 1)
244  {
245  orig_reg_data->push_back(a*unit2);
246  log_reg_data->push_back(std::log10(a)+std::log10(unit2));
247  }
248  k++;
249  }
250  }
251  while (a != -2); // End of File
252 
253  file.close();
254  G4VDataSetAlgorithm* algo = interpolation->Clone();
255 
256  G4VEMDataSet* dataSet = new G4EMDataSet(Z,orig_reg_energies,orig_reg_data,log_reg_energies,log_reg_data,algo);
257 
258  dataMap[Z] = dataSet;
259 
260  }
261 }
262 
263 
265 {
266  size_t nZ = activeZ.size();
267  for (size_t i=0; i<nZ; i++)
268  {
269  G4int Z = (G4int) activeZ[i];
270 
271  // Build the complete string identifying the file with the data set
272 
273  char* path = getenv("G4LEDATA");
274  if (!path)
275  {
276  G4Exception("G4VCrossSectionHandler::LoadNonLogData",
277  "em0006",FatalException,"G4LEDATA environment variable not set");
278  return;
279  }
280 
281  std::ostringstream ost;
282  ost << path << '/' << fileName << Z << ".dat";
283  std::ifstream file(ost.str().c_str());
284  std::filebuf* lsdp = file.rdbuf();
285 
286  if (! (lsdp->is_open()) )
287  {
288  G4String excep = "data file: " + ost.str() + " not found";
289  G4Exception("G4VCrossSectionHandler::LoadNonLogData",
290  "em0003",FatalException,excep);
291  }
292  G4double a = 0;
293  G4int k = 0;
294  G4int nColumns = 2;
295 
296  G4DataVector* orig_reg_energies = new G4DataVector;
297  G4DataVector* orig_reg_data = new G4DataVector;
298 
299  do
300  {
301  file >> a;
302 
303  // The file is organized into four columns:
304  // 1st column contains the values of energy
305  // 2nd column contains the corresponding data value
306  // The file terminates with the pattern: -1 -1
307  // -2 -2
308  //
309  if (a != -1 && a != -2)
310  {
311  if (k%nColumns == 0)
312  {
313  orig_reg_energies->push_back(a*unit1);
314  }
315  else if (k%nColumns == 1)
316  {
317  orig_reg_data->push_back(a*unit2);
318  }
319  k++;
320  }
321  }
322  while (a != -2); // End of File
323 
324  file.close();
325  G4VDataSetAlgorithm* algo = interpolation->Clone();
326 
327  G4VEMDataSet* dataSet = new G4EMDataSet(Z,orig_reg_energies,orig_reg_data,algo);
328 
329  dataMap[Z] = dataSet;
330 
331  }
332 }
333 
335 {
336  size_t nZ = activeZ.size();
337  for (size_t i=0; i<nZ; i++)
338  {
339  G4int Z = (G4int) activeZ[i];
340 
341  G4VDataSetAlgorithm* algo = interpolation->Clone();
342  G4VEMDataSet* dataSet = new G4ShellEMDataSet(Z, algo);
343 
344  dataSet->LoadData(fileName);
345 
346  dataMap[Z] = dataSet;
347  }
348 }
349 
350 
351 
352 
354 {
355  // Reset the map of data sets: remove the data sets from the map
356  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::iterator pos;
357 
358  if(! dataMap.empty())
359  {
360  for (pos = dataMap.begin(); pos != dataMap.end(); ++pos)
361  {
362  // The following is a workaround for STL ObjectSpace implementation,
363  // which does not support the standard and does not accept
364  // the syntax pos->first or pos->second
365  // G4VEMDataSet* dataSet = pos->second;
366  G4VEMDataSet* dataSet = (*pos).second;
367  delete dataSet;
368  dataSet = 0;
369  G4int i = (*pos).first;
370  dataMap[i] = 0;
371  }
372  dataMap.clear();
373  }
374 
375  activeZ.clear();
376  ActiveElements();
377 }
378 
380 {
381  G4double value = 0.;
382 
383  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
384  pos = dataMap.find(Z);
385  if (pos!= dataMap.end())
386  {
387  // The following is a workaround for STL ObjectSpace implementation,
388  // which does not support the standard and does not accept
389  // the syntax pos->first or pos->second
390  // G4VEMDataSet* dataSet = pos->second;
391  G4VEMDataSet* dataSet = (*pos).second;
392  value = dataSet->FindValue(energy);
393  }
394  else
395  {
396  G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find Z = "
397  << Z << G4endl;
398  }
399  return value;
400 }
401 
403  G4int shellIndex) const
404 {
405  G4double value = 0.;
406 
407  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
408  pos = dataMap.find(Z);
409  if (pos!= dataMap.end())
410  {
411  // The following is a workaround for STL ObjectSpace implementation,
412  // which does not support the standard and does not accept
413  // the syntax pos->first or pos->second
414  // G4VEMDataSet* dataSet = pos->second;
415  G4VEMDataSet* dataSet = (*pos).second;
416  if (shellIndex >= 0)
417  {
418  G4int nComponents = dataSet->NumberOfComponents();
419  if(shellIndex < nComponents)
420  // - MGP - Why doesn't it use G4VEMDataSet::FindValue directly?
421  value = dataSet->GetComponent(shellIndex)->FindValue(energy);
422  else
423  {
424  G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find"
425  << " shellIndex= " << shellIndex
426  << " for Z= "
427  << Z << G4endl;
428  }
429  } else {
430  value = dataSet->FindValue(energy);
431  }
432  }
433  else
434  {
435  G4cout << "WARNING: G4VCrossSectionHandler::FindValue did not find Z = "
436  << Z << G4endl;
437  }
438  return value;
439 }
440 
441 
443  G4double energy) const
444 {
445  G4double value = 0.;
446 
447  const G4ElementVector* elementVector = material->GetElementVector();
448  const G4double* nAtomsPerVolume = material->GetVecNbOfAtomsPerVolume();
449  G4int nElements = material->GetNumberOfElements();
450 
451  for (G4int i=0 ; i<nElements ; i++)
452  {
453  G4int Z = (G4int) (*elementVector)[i]->GetZ();
454  G4double elementValue = FindValue(Z,energy);
455  G4double nAtomsVol = nAtomsPerVolume[i];
456  value += nAtomsVol * elementValue;
457  }
458 
459  return value;
460 }
461 
462 
464 {
465  // Builds a CompositeDataSet containing the mean free path for each material
466  // in the material table
467 
468  G4DataVector energyVector;
469  G4double dBin = std::log10(eMax/eMin) / nBins;
470 
471  for (G4int i=0; i<nBins+1; i++)
472  {
473  energyVector.push_back(std::pow(10., std::log10(eMin)+i*dBin));
474  }
475 
476  // Factory method to build cross sections in derived classes,
477  // related to the type of physics process
478 
479  if (crossSections != 0)
480  { // Reset the list of cross sections
481  std::vector<G4VEMDataSet*>::iterator mat;
482  if (! crossSections->empty())
483  {
484  for (mat = crossSections->begin(); mat!= crossSections->end(); ++mat)
485  {
486  G4VEMDataSet* set = *mat;
487  delete set;
488  set = 0;
489  }
490  crossSections->clear();
491  delete crossSections;
492  crossSections = 0;
493  }
494  }
495 
496  crossSections = BuildCrossSectionsForMaterials(energyVector,energyCuts);
497 
498  if (crossSections == 0)
499  {
500  G4Exception("G4VCrossSectionHandler::BuildMeanFreePathForMaterials",
501  "em1010",FatalException,"crossSections = 0");
502  return 0;
503  }
504 
506  G4VEMDataSet* materialSet = new G4CompositeEMDataSet(algo);
507  //G4cout << "G4VCrossSectionHandler new dataset " << materialSet << G4endl;
508 
509  G4DataVector* energies;
511  G4DataVector* log_energies;
512  G4DataVector* log_data;
513 
514 
515  const G4ProductionCutsTable* theCoupleTable=
517  size_t numOfCouples = theCoupleTable->GetTableSize();
518 
519 
520  for (size_t mLocal=0; mLocal<numOfCouples; mLocal++)
521  {
522  energies = new G4DataVector;
523  data = new G4DataVector;
524  log_energies = new G4DataVector;
525  log_data = new G4DataVector;
526  for (G4int bin=0; bin<nBins; bin++)
527  {
528  G4double energy = energyVector[bin];
529  energies->push_back(energy);
530  log_energies->push_back(std::log10(energy));
531  G4VEMDataSet* matCrossSet = (*crossSections)[mLocal];
532  G4double materialCrossSection = 0.0;
533  G4int nElm = matCrossSet->NumberOfComponents();
534  for(G4int j=0; j<nElm; j++) {
535  materialCrossSection += matCrossSet->GetComponent(j)->FindValue(energy);
536  }
537 
538  if (materialCrossSection > 0.)
539  {
540  data->push_back(1./materialCrossSection);
541  log_data->push_back(std::log10(1./materialCrossSection));
542  }
543  else
544  {
545  data->push_back(DBL_MAX);
546  log_data->push_back(std::log10(DBL_MAX));
547  }
548  }
550 
551  //G4VEMDataSet* dataSet = new G4EMDataSet(m,energies,data,algo,1.,1.);
552 
553  G4VEMDataSet* dataSet = new G4EMDataSet(mLocal,energies,data,log_energies,log_data,algoLocal,1.,1.);
554 
555  materialSet->AddComponent(dataSet);
556  }
557 
558  return materialSet;
559 }
560 
561 
563  G4double e) const
564 {
565  // Select randomly an element within the material, according to the weight
566  // determined by the cross sections in the data set
567 
568  const G4Material* material = couple->GetMaterial();
569  G4int nElements = material->GetNumberOfElements();
570 
571  // Special case: the material consists of one element
572  if (nElements == 1)
573  {
574  G4int Z = (G4int) material->GetZ();
575  return Z;
576  }
577 
578  // Composite material
579 
580  const G4ElementVector* elementVector = material->GetElementVector();
581  size_t materialIndex = couple->GetIndex();
582 
583  G4VEMDataSet* materialSet = (*crossSections)[materialIndex];
584  G4double materialCrossSection0 = 0.0;
585  G4DataVector cross;
586  cross.clear();
587  for ( G4int i=0; i < nElements; i++ )
588  {
589  G4double cr = materialSet->GetComponent(i)->FindValue(e);
590  materialCrossSection0 += cr;
591  cross.push_back(materialCrossSection0);
592  }
593 
594  G4double random = G4UniformRand() * materialCrossSection0;
595 
596  for (G4int k=0 ; k < nElements ; k++ )
597  {
598  if (random <= cross[k]) return (G4int) (*elementVector)[k]->GetZ();
599  }
600  // It should never get here
601  return 0;
602 }
603 
605  G4double e) const
606 {
607  // Select randomly an element within the material, according to the weight determined
608  // by the cross sections in the data set
609 
610  const G4Material* material = couple->GetMaterial();
611  G4Element* nullElement = 0;
612  G4int nElements = material->GetNumberOfElements();
613  const G4ElementVector* elementVector = material->GetElementVector();
614 
615  // Special case: the material consists of one element
616  if (nElements == 1)
617  {
618  G4Element* element = (*elementVector)[0];
619  return element;
620  }
621  else
622  {
623  // Composite material
624 
625  size_t materialIndex = couple->GetIndex();
626 
627  G4VEMDataSet* materialSet = (*crossSections)[materialIndex];
628  G4double materialCrossSection0 = 0.0;
629  G4DataVector cross;
630  cross.clear();
631  for (G4int i=0; i<nElements; i++)
632  {
633  G4double cr = materialSet->GetComponent(i)->FindValue(e);
634  materialCrossSection0 += cr;
635  cross.push_back(materialCrossSection0);
636  }
637 
638  G4double random = G4UniformRand() * materialCrossSection0;
639 
640  for (G4int k=0 ; k < nElements ; k++ )
641  {
642  if (random <= cross[k]) return (*elementVector)[k];
643  }
644  // It should never end up here
645  G4cout << "G4VCrossSectionHandler::SelectRandomElement - no element found" << G4endl;
646  return nullElement;
647  }
648 }
649 
651 {
652  // Select randomly a shell, according to the weight determined by the cross sections
653  // in the data set
654 
655  // Note for later improvement: it would be useful to add a cache mechanism for already
656  // used shells to improve performance
657 
658  G4int shell = 0;
659 
660  G4double totCrossSection = FindValue(Z,e);
661  G4double random = G4UniformRand() * totCrossSection;
662  G4double partialSum = 0.;
663 
664  G4VEMDataSet* dataSet = 0;
665  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
666  pos = dataMap.find(Z);
667  // The following is a workaround for STL ObjectSpace implementation,
668  // which does not support the standard and does not accept
669  // the syntax pos->first or pos->second
670  // if (pos != dataMap.end()) dataSet = pos->second;
671  if (pos != dataMap.end())
672  dataSet = (*pos).second;
673  else
674  {
675  G4Exception("G4VCrossSectionHandler::SelectRandomShell",
676  "em1011",FatalException,"unable to load the dataSet");
677  return 0;
678  }
679 
680  size_t nShells = dataSet->NumberOfComponents();
681  for (size_t i=0; i<nShells; i++)
682  {
683  const G4VEMDataSet* shellDataSet = dataSet->GetComponent(i);
684  if (shellDataSet != 0)
685  {
686  G4double value = shellDataSet->FindValue(e);
687  partialSum += value;
688  if (random <= partialSum) return i;
689  }
690  }
691  // It should never get here
692  return shell;
693 }
694 
696 {
697  const G4MaterialTable* materialTable = G4Material::GetMaterialTable();
698  if (materialTable == 0)
699  G4Exception("G4VCrossSectionHandler::ActiveElements",
700  "em1001",FatalException,"no MaterialTable found");
701 
703 
704  for (G4int mLocal2=0; mLocal2<nMaterials; mLocal2++)
705  {
706  const G4Material* material= (*materialTable)[mLocal2];
707  const G4ElementVector* elementVector = material->GetElementVector();
708  const G4int nElements = material->GetNumberOfElements();
709 
710  for (G4int iEl=0; iEl<nElements; iEl++)
711  {
712  G4Element* element = (*elementVector)[iEl];
713  G4double Z = element->GetZ();
714  if (!(activeZ.contains(Z)) && Z >= zMin && Z <= zMax)
715  {
716  activeZ.push_back(Z);
717  }
718  }
719  }
720 }
721 
723 {
725  return algorithm;
726 }
727 
729 {
730  G4int n = 0;
731 
732  std::map<G4int,G4VEMDataSet*,std::less<G4int> >::const_iterator pos;
733  pos = dataMap.find(Z);
734  if (pos!= dataMap.end())
735  {
736  G4VEMDataSet* dataSet = (*pos).second;
737  n = dataSet->NumberOfComponents();
738  }
739  else
740  {
741  G4cout << "WARNING: G4VCrossSectionHandler::NumberOfComponents did not "
742  << "find Z = "
743  << Z << G4endl;
744  }
745  return n;
746 }
747 
748 
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
G4double GetZ() const
Definition: G4Material.cc:606
std::vector< G4Element * > G4ElementVector
tuple bin
Definition: plottest35.py:22
virtual std::vector< G4VEMDataSet * > * BuildCrossSectionsForMaterials(const G4DataVector &energyVector, const G4DataVector *energyCuts=0)=0
G4double z
Definition: TRTMaterials.hh:39
G4int SelectRandomShell(G4int Z, G4double e) const
G4double GetZ() const
Definition: G4Element.hh:131
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:564
std::vector< G4Material * > G4MaterialTable
G4int nComponents
Definition: TRTMaterials.hh:41
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
int G4int
Definition: G4Types.hh:78
virtual G4VDataSetAlgorithm * Clone() const =0
G4double ValueForMaterial(const G4Material *material, G4double e) const
string material
Definition: eplot.py:19
G4int NumberOfComponents(G4int Z) const
virtual const G4VEMDataSet * GetComponent(G4int componentId) const =0
G4double FindValue(G4int Z, G4double e) const
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
double precision function energy(A, Z)
Definition: dpm25nuc6.f:4106
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
virtual size_t NumberOfComponents(void) const =0
virtual void AddComponent(G4VEMDataSet *dataSet)=0
G4VEMDataSet * BuildMeanFreePathForMaterials(const G4DataVector *energyCuts=0)
const G4int n
static size_t GetNumberOfMaterials()
Definition: G4Material.cc:571
void LoadShellData(const G4String &dataFile)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
virtual void PrintData(void) const =0
static G4ProductionCutsTable * GetProductionCutsTable()
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
void LoadNonLogData(const G4String &dataFile)
void LoadData(const G4String &dataFile)
virtual G4bool LoadData(const G4String &fileName)=0
const G4Element * SelectRandomElement(const G4MaterialCutsCouple *material, G4double e) const
const XML_Char int const XML_Char * value
#define G4endl
Definition: G4ios.hh:61
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
virtual G4VDataSetAlgorithm * CreateInterpolation()
double G4double
Definition: G4Types.hh:76
G4bool contains(const G4double &) const
#define DBL_MAX
Definition: templates.hh:83
G4int SelectRandomAtom(const G4MaterialCutsCouple *couple, G4double e) const
const XML_Char const XML_Char * data
const G4Material * GetMaterial() const