Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RPGXiMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 
29 #include "G4RPGXiMinusInelastic.hh"
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40  {
44  return &theParticleChange;
45  }
46 
47  // create the target particle
48 
49  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 
51  if( verboseLevel > 1 )
52  {
53  const G4Material *targetMaterial = aTrack.GetMaterial();
54  G4cout << "G4RPGXiMinusInelastic::ApplyYourself called" << G4endl;
55  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56  G4cout << "target material = " << targetMaterial->GetName() << ", ";
57  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58  << G4endl;
59  }
60 
61  // Fermi motion and evaporation
62  // As of Geant3, the Fermi energy calculation had not been Done
63 
64  G4double ek = originalIncident->GetKineticEnergy()/MeV;
65  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66  G4ReactionProduct modifiedOriginal;
67  modifiedOriginal = *originalIncident;
68 
69  G4double tkin = targetNucleus.Cinema( ek );
70  ek += tkin;
71  modifiedOriginal.SetKineticEnergy( ek*MeV );
72  G4double et = ek + amas;
73  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75  if( pp > 0.0 )
76  {
77  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78  modifiedOriginal.SetMomentum( momentum * (p/pp) );
79  }
80  //
81  // calculate black track energies
82  //
83  tkin = targetNucleus.EvaporationEffects( ek );
84  ek -= tkin;
85  modifiedOriginal.SetKineticEnergy( ek*MeV );
86  et = ek + amas;
87  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88  pp = modifiedOriginal.GetMomentum().mag()/MeV;
89  if( pp > 0.0 )
90  {
91  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92  modifiedOriginal.SetMomentum( momentum * (p/pp) );
93  }
94  G4ReactionProduct currentParticle = modifiedOriginal;
95  G4ReactionProduct targetParticle;
96  targetParticle = *originalTarget;
97  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99  G4bool incidentHasChanged = false;
100  G4bool targetHasChanged = false;
101  G4bool quasiElastic = false;
102  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103  G4int vecLen = 0;
104  vec.Initialize( 0 );
105 
106  const G4double cutOff = 0.1;
107  if( currentParticle.GetKineticEnergy()/MeV > cutOff )
108  Cascade( vec, vecLen,
109  originalIncident, currentParticle, targetParticle,
110  incidentHasChanged, targetHasChanged, quasiElastic );
111 
112  CalculateMomenta( vec, vecLen,
113  originalIncident, originalTarget, modifiedOriginal,
114  targetNucleus, currentParticle, targetParticle,
115  incidentHasChanged, targetHasChanged, quasiElastic );
116 
117  SetUpChange( vec, vecLen,
118  currentParticle, targetParticle,
119  incidentHasChanged );
120 
121  delete originalTarget;
122  return &theParticleChange;
123 }
124 
125 
126 void
127 G4RPGXiMinusInelastic::Cascade(G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
128  G4int& vecLen,
129  const G4HadProjectile* originalIncident,
130  G4ReactionProduct& currentParticle,
131  G4ReactionProduct& targetParticle,
132  G4bool& incidentHasChanged,
133  G4bool& targetHasChanged,
134  G4bool& quasiElastic)
135 {
136  // Derived from H. Fesefeldt's original FORTRAN code CASXM
137  //
138  // XiMinus undergoes interaction with nucleon within a nucleus. Check if it is
139  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140  // occurs and input particle is degraded in energy. No other particles are produced.
141  // If reaction is possible, find the correct number of pions/protons/neutrons
142  // produced using an interpolation to multiplicity data. Replace some pions or
143  // protons/neutrons by kaons or strange baryons according to the average
144  // multiplicity per inelastic reaction.
145 
146  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148  const G4double targetMass = targetParticle.GetMass()/MeV;
149  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150  targetMass*targetMass +
151  2.0*targetMass*etOriginal );
152  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153  if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
154  quasiElastic = true;
155  return;
156  }
157  static G4ThreadLocal G4bool first = true;
158  const G4int numMul = 1200;
159  const G4int numSec = 60;
160  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
161  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
162 
163  // np = number of pi+, nneg = number of pi-, nz = number of pi0
164  G4int counter, nt = 0, np = 0, nneg = 0, nz = 0;
165  G4double test;
166  const G4double c = 1.25;
167  const G4double b[] = { 0.7, 0.7 };
168  if (first) { // Computation of normalization constants will only be done once
169  first = false;
170  G4int i;
171  for (i = 0; i < numMul; ++i) protmul[i] = 0.0;
172  for (i = 0; i < numSec; ++i) protnorm[i] = 0.0;
173  counter = -1;
174  for (np = 0; np < (numSec/3); ++np) {
175  for (nneg = std::max(0,np-1); nneg <= (np+1); ++nneg) {
176  for (nz = 0; nz < numSec/3; ++nz) {
177  if (++counter < numMul) {
178  nt = np + nneg + nz;
179  if (nt > 0 && nt <= numSec) {
180  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
181  protnorm[nt-1] += protmul[counter];
182  }
183  }
184  }
185  }
186  }
187 
188  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
189  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
190  counter = -1;
191  for( np=0; np<numSec/3; ++np )
192  {
193  for( nneg=np; nneg<=(np+2); ++nneg )
194  {
195  for( nz=0; nz<numSec/3; ++nz )
196  {
197  if( ++counter < numMul )
198  {
199  nt = np+nneg+nz;
200  if( nt>0 && nt<=numSec )
201  {
202  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
203  neutnorm[nt-1] += neutmul[counter];
204  }
205  }
206  }
207  }
208  }
209  for( i=0; i<numSec; ++i )
210  {
211  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
212  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
213  }
214  } // end of initialization
215 
216  const G4double expxu = 82.; // upper bound for arg. of exp
217  const G4double expxl = -expxu; // lower bound for arg. of exp
223  //
224  // energetically possible to produce pion(s) --> inelastic scattering
225  //
226  G4double n, anpn;
227  GetNormalizationConstant( availableEnergy, n, anpn );
228  G4double ran = G4UniformRand();
229  G4double dum, excs = 0.0;
230  if( targetParticle.GetDefinition() == aProton )
231  {
232  counter = -1;
233  for( np=0; np<numSec/3 && ran>=excs; ++np )
234  {
235  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
236  {
237  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
238  {
239  if( ++counter < numMul )
240  {
241  nt = np+nneg+nz;
242  if( nt>0 && nt<=numSec )
243  {
244  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
245  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
246  if( std::fabs(dum) < 1.0 )
247  {
248  if( test >= 1.0e-10 )excs += dum*test;
249  }
250  else
251  excs += dum*test;
252  }
253  }
254  }
255  }
256  }
257  if( ran >= excs ) // 3 previous loops continued to the end
258  {
259  quasiElastic = true;
260  return;
261  }
262  np--; nneg--; nz--;
263  //
264  // number of secondary mesons determined by kno distribution
265  // check for total charge of final state mesons to determine
266  // the kind of baryons to be produced, taking into account
267  // charge and strangeness conservation
268  //
269  if( np < nneg )
270  {
271  if( np+1 == nneg )
272  {
273  currentParticle.SetDefinitionAndUpdateE( aXiZero );
274  incidentHasChanged = true;
275  }
276  else // charge mismatch
277  {
278  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
279  incidentHasChanged = true;
280  //
281  // correct the strangeness by replacing a pi- by a kaon-
282  //
283  vec.Initialize( 1 );
285  p->SetDefinition( aKaonMinus );
286  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
287  vec.SetElement( vecLen++, p );
288  --nneg;
289  }
290  }
291  else if( np == nneg )
292  {
293  if( G4UniformRand() >= 0.5 )
294  {
295  currentParticle.SetDefinitionAndUpdateE( aXiZero );
296  incidentHasChanged = true;
297  targetParticle.SetDefinitionAndUpdateE( aNeutron );
298  targetHasChanged = true;
299  }
300  }
301  else
302  {
303  targetParticle.SetDefinitionAndUpdateE( aNeutron );
304  targetHasChanged = true;
305  }
306  }
307  else // target must be a neutron
308  {
309  counter = -1;
310  for( np=0; np<numSec/3 && ran>=excs; ++np )
311  {
312  for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
313  {
314  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
315  {
316  if( ++counter < numMul )
317  {
318  nt = np+nneg+nz;
319  if( nt>0 && nt<=numSec )
320  {
321  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
322  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
323  if( std::fabs(dum) < 1.0 )
324  {
325  if( test >= 1.0e-10 )excs += dum*test;
326  }
327  else
328  excs += dum*test;
329  }
330  }
331  }
332  }
333  }
334  if( ran >= excs ) // 3 previous loops continued to the end
335  {
336  quasiElastic = true;
337  return;
338  }
339  np--; nneg--; nz--;
340  if( np+1 < nneg )
341  {
342  if( np+2 == nneg )
343  {
344  currentParticle.SetDefinitionAndUpdateE( aXiZero );
345  incidentHasChanged = true;
346  targetParticle.SetDefinitionAndUpdateE( aProton );
347  targetHasChanged = true;
348  }
349  else // charge mismatch
350  {
351  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
352  incidentHasChanged = true;
353  targetParticle.SetDefinitionAndUpdateE( aProton );
354  targetHasChanged = true;
355  //
356  // correct the strangeness by replacing a pi- by a kaon-
357  //
358  vec.Initialize( 1 );
360  p->SetDefinition( aKaonMinus );
361  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
362  vec.SetElement( vecLen++, p );
363  --nneg;
364  }
365  }
366  else if( np+1 == nneg )
367  {
368  if( G4UniformRand() < 0.5 )
369  {
370  currentParticle.SetDefinitionAndUpdateE( aXiZero );
371  incidentHasChanged = true;
372  }
373  else
374  {
375  targetParticle.SetDefinitionAndUpdateE( aProton );
376  targetHasChanged = true;
377  }
378  }
379  }
380  SetUpPions(np, nneg, nz, vec, vecLen);
381  return;
382 }
383 
384  /* end of file */
385 
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const char * p
Definition: xmltok.h:285
const G4String & GetName() const
Definition: G4Material.hh:176
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4ParticleDefinition * GetDefinition() const
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
Hep3Vector unit() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
def test
Definition: mcscore.py:117
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
double mag() const
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalEnergy() const