Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RPGAntiSigmaPlusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40  {
44  return &theParticleChange;
45  }
46 
47  // Choose the target particle
48 
49  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 
51  if( verboseLevel > 1 )
52  {
53  const G4Material *targetMaterial = aTrack.GetMaterial();
54  G4cout << "G4RPGAntiSigmaPlusInelastic::ApplyYourself called" << G4endl;
55  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56  G4cout << "target material = " << targetMaterial->GetName() << ", ";
57  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58  << G4endl;
59  }
60 
61  // Fermi motion and evaporation
62  // As of Geant3, the Fermi energy calculation had not been Done
63 
64  G4double ek = originalIncident->GetKineticEnergy()/MeV;
65  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66  G4ReactionProduct modifiedOriginal;
67  modifiedOriginal = *originalIncident;
68 
69  G4double tkin = targetNucleus.Cinema( ek );
70  ek += tkin;
71  modifiedOriginal.SetKineticEnergy( ek*MeV );
72  G4double et = ek + amas;
73  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75  if( pp > 0.0 )
76  {
77  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78  modifiedOriginal.SetMomentum( momentum * (p/pp) );
79  }
80  //
81  // calculate black track energies
82  //
83  tkin = targetNucleus.EvaporationEffects( ek );
84  ek -= tkin;
85  modifiedOriginal.SetKineticEnergy( ek*MeV );
86  et = ek + amas;
87  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88  pp = modifiedOriginal.GetMomentum().mag()/MeV;
89  if( pp > 0.0 )
90  {
91  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92  modifiedOriginal.SetMomentum( momentum * (p/pp) );
93  }
94  G4ReactionProduct currentParticle = modifiedOriginal;
95  G4ReactionProduct targetParticle;
96  targetParticle = *originalTarget;
97  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99  G4bool incidentHasChanged = false;
100  G4bool targetHasChanged = false;
101  G4bool quasiElastic = false;
102  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103  G4int vecLen = 0;
104  vec.Initialize( 0 );
105 
106  const G4double cutOff = 0.1;
107  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
108  if( (currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
109  Cascade( vec, vecLen,
110  originalIncident, currentParticle, targetParticle,
111  incidentHasChanged, targetHasChanged, quasiElastic );
112 
113  CalculateMomenta( vec, vecLen,
114  originalIncident, originalTarget, modifiedOriginal,
115  targetNucleus, currentParticle, targetParticle,
116  incidentHasChanged, targetHasChanged, quasiElastic );
117 
118  SetUpChange( vec, vecLen,
119  currentParticle, targetParticle,
120  incidentHasChanged );
121 
122  delete originalTarget;
123  return &theParticleChange;
124 }
125 
126 
127 void G4RPGAntiSigmaPlusInelastic::Cascade(
129  G4int& vecLen,
130  const G4HadProjectile *originalIncident,
131  G4ReactionProduct &currentParticle,
132  G4ReactionProduct &targetParticle,
133  G4bool &incidentHasChanged,
134  G4bool &targetHasChanged,
135  G4bool &quasiElastic )
136 {
137  // Derived from H. Fesefeldt's original FORTRAN code CASASP
138  // AntiSigmaPlus undergoes interaction with nucleon within a nucleus. Check if it is
139  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140  // occurs and input particle is degraded in energy. No other particles are produced.
141  // If reaction is possible, find the correct number of pions/protons/neutrons
142  // produced using an interpolation to multiplicity data. Replace some pions or
143  // protons/neutrons by kaons or strange baryons according to the average
144  // multiplicity per Inelastic reaction.
145 
146  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148  const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
149  const G4double targetMass = targetParticle.GetMass()/MeV;
150  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
151  targetMass*targetMass +
152  2.0*targetMass*etOriginal );
153  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
154 
155  static G4ThreadLocal G4bool first = true;
156  const G4int numMul = 1200;
157  const G4int numMulA = 400;
158  const G4int numSec = 60;
159  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
160  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
161  static G4ThreadLocal G4double protmulA[numMulA], protnormA[numSec]; // proton constants
162  static G4ThreadLocal G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
163  // np = number of pi+, nneg = number of pi-, nz = number of pi0
164  G4int counter, nt=0, np=0, nneg=0, nz=0;
165  G4double test;
166  const G4double c = 1.25;
167  const G4double b[] = { 0.7, 0.7 };
168  if( first ) // compute normalization constants, this will only be Done once
169  {
170  first = false;
171  G4int i;
172  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
173  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
174  counter = -1;
175  for( np=0; np<(numSec/3); ++np )
176  {
177  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
178  {
179  for( nz=0; nz<numSec/3; ++nz )
180  {
181  if( ++counter < numMul )
182  {
183  nt = np+nneg+nz;
184  if( nt>0 && nt<=numSec )
185  {
186  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187  protnorm[nt-1] += protmul[counter];
188  }
189  }
190  }
191  }
192  }
193  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
194  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
195  counter = -1;
196  for( np=0; np<numSec/3; ++np )
197  {
198  for( nneg=np; nneg<=(np+2); ++nneg )
199  {
200  for( nz=0; nz<numSec/3; ++nz )
201  {
202  if( ++counter < numMul )
203  {
204  nt = np+nneg+nz;
205  if( nt>0 && nt<=numSec )
206  {
207  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208  neutnorm[nt-1] += neutmul[counter];
209  }
210  }
211  }
212  }
213  }
214  for( i=0; i<numSec; ++i )
215  {
216  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218  }
219  //
220  // do the same for annihilation channels
221  //
222  for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
223  for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
224  counter = -1;
225  for( np=1; np<(numSec/3); ++np )
226  {
227  nneg = np;
228  for( nz=0; nz<numSec/3; ++nz )
229  {
230  if( ++counter < numMulA )
231  {
232  nt = np+nneg+nz;
233  if( nt>1 && nt<=numSec )
234  {
235  protmulA[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
236  protnormA[nt-1] += protmulA[counter];
237  }
238  }
239  }
240  }
241  for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
242  for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
243  counter = -1;
244  for( np=0; np<numSec/3; ++np )
245  {
246  nneg = np+1;
247  for( nz=0; nz<numSec/3; ++nz )
248  {
249  if( ++counter < numMulA )
250  {
251  nt = np+nneg+nz;
252  if( nt>1 && nt<=numSec )
253  {
254  neutmulA[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
255  neutnormA[nt-1] += neutmulA[counter];
256  }
257  }
258  }
259  }
260  for( i=0; i<numSec; ++i )
261  {
262  if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
263  if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
264  }
265  } // end of initialization
266 
267  const G4double expxu = 82.; // upper bound for arg. of exp
268  const G4double expxl = -expxu; // lower bound for arg. of exp
277  const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
278  0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
279  0.39,0.36,0.33,0.10,0.01};
280  G4int iplab = G4int( pOriginal/GeV*10.0 );
281  if( iplab > 9 )iplab = G4int( (pOriginal/GeV- 1.0)*5.0 ) + 10;
282  if( iplab > 14 )iplab = G4int( pOriginal/GeV- 2.0 ) + 15;
283  if( iplab > 22 )iplab = G4int( (pOriginal/GeV-10.0)/10.0 ) + 23;
284  if( iplab > 24 )iplab = 24;
285  if( G4UniformRand() > anhl[iplab] )
286  {
287  if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
288  {
289  quasiElastic = true;
290  return;
291  }
292  G4double n, anpn;
293  GetNormalizationConstant( availableEnergy, n, anpn );
294  G4double ran = G4UniformRand();
295  G4double dum, excs = 0.0;
296  if( targetParticle.GetDefinition() == aProton )
297  {
298  counter = -1;
299  for( np=0; np<numSec/3 && ran>=excs; ++np )
300  {
301  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
302  {
303  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
304  {
305  if( ++counter < numMul )
306  {
307  nt = np+nneg+nz;
308  if( (nt>0) && (nt<=numSec) )
309  {
310  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
311  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
312  if( std::fabs(dum) < 1.0 )
313  {
314  if( test >= 1.0e-10 )excs += dum*test;
315  }
316  else
317  excs += dum*test;
318  }
319  }
320  }
321  }
322  }
323  if( ran >= excs ) // 3 previous loops continued to the end
324  {
325  quasiElastic = true;
326  return;
327  }
328  np--; nneg--; nz--;
329  G4int ncht = std::min( 3, std::max( 1, np-nneg+2 ) );
330  switch( ncht )
331  {
332  case 1:
333  if( G4UniformRand() < 0.5 )
334  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
335  else
336  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
337  incidentHasChanged = true;
338  break;
339  case 2:
340  if( G4UniformRand() >= 0.5 )
341  {
342  if( G4UniformRand() < 0.5 )
343  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
344  else
345  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
346  incidentHasChanged = true;
347  }
348  targetParticle.SetDefinitionAndUpdateE( aNeutron );
349  targetHasChanged = true;
350  break;
351  case 3:
352  targetParticle.SetDefinitionAndUpdateE( aNeutron );
353  targetHasChanged = true;
354  break;
355  }
356  }
357  else // target must be a neutron
358  {
359  counter = -1;
360  for( np=0; np<numSec/3 && ran>=excs; ++np )
361  {
362  for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
363  {
364  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
365  {
366  if( ++counter < numMul )
367  {
368  nt = np+nneg+nz;
369  if( (nt>0) && (nt<=numSec) )
370  {
371  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
372  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
373  if( std::fabs(dum) < 1.0 )
374  {
375  if( test >= 1.0e-10 )excs += dum*test;
376  }
377  else
378  excs += dum*test;
379  }
380  }
381  }
382  }
383  }
384  if( ran >= excs ) // 3 previous loops continued to the end
385  {
386  quasiElastic = true;
387  return;
388  }
389  np--; nneg--; nz--;
390  G4int ncht = std::min( 3, std::max( 1, np-nneg+3 ) );
391  switch( ncht )
392  {
393  case 1:
394  if( G4UniformRand() < 0.5 )
395  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
396  else
397  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
398  incidentHasChanged = true;
399  targetParticle.SetDefinitionAndUpdateE( aProton );
400  targetHasChanged = true;
401  break;
402  case 2:
403  if( G4UniformRand() < 0.5 )
404  {
405  if( G4UniformRand() < 0.5 )
406  {
407  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
408  incidentHasChanged = true;
409  }
410  else
411  {
412  targetParticle.SetDefinitionAndUpdateE( aProton );
413  targetHasChanged = true;
414  }
415  }
416  else
417  {
418  if( G4UniformRand() < 0.5 )
419  {
420  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
421  incidentHasChanged = true;
422  }
423  else
424  {
425  targetParticle.SetDefinitionAndUpdateE( aProton );
426  targetHasChanged = true;
427  }
428  }
429  break;
430  case 3:
431  break;
432  }
433  }
434  }
435  else // random number <= anhl[iplab]
436  {
437  if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
438  {
439  quasiElastic = true;
440  return;
441  }
442  G4double n, anpn;
443  GetNormalizationConstant( -centerofmassEnergy, n, anpn );
444  G4double ran = G4UniformRand();
445  G4double dum, excs = 0.0;
446  if( targetParticle.GetDefinition() == aProton )
447  {
448  counter = -1;
449  for( np=1; np<numSec/3 && ran>=excs; ++np )
450  {
451  nneg = np;
452  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
453  {
454  if( ++counter < numMulA )
455  {
456  nt = np+nneg+nz;
457  if( nt>1 && nt<=numSec )
458  {
459  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
460  dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
461  if( std::fabs(dum) < 1.0 )
462  {
463  if( test >= 1.0e-10 )excs += dum*test;
464  }
465  else
466  excs += dum*test;
467  }
468  }
469  }
470  }
471  if( ran >= excs ) // 3 previous loops continued to the end
472  {
473  quasiElastic = true;
474  return;
475  }
476  np--; nz--;
477  }
478  else // target must be a neutron
479  {
480  counter = -1;
481  for( np=0; np<numSec/3 && ran>=excs; ++np )
482  {
483  nneg = np+1;
484  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
485  {
486  if( ++counter < numMulA )
487  {
488  nt = np+nneg+nz;
489  if( nt>1 && nt<=numSec )
490  {
491  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
492  dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
493  if( std::fabs(dum) < 1.0 )
494  {
495  if( test >= 1.0e-10 )excs += dum*test;
496  }
497  else
498  excs += dum*test;
499  }
500  }
501  }
502  }
503  if( ran >= excs ) // 3 previous loops continued to the end
504  {
505  quasiElastic = true;
506  return;
507  }
508  np--; nz--;
509  }
510  if( nz > 0 )
511  {
512  if( nneg > 0 )
513  {
514  if( G4UniformRand() < 0.5 )
515  {
516  vec.Initialize( 1 );
518  p->SetDefinition( aKaonMinus );
519  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
520  vec.SetElement( vecLen++, p );
521  --nneg;
522  }
523  else
524  {
525  vec.Initialize( 1 );
527  p->SetDefinition( aKaonZL );
528  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
529  vec.SetElement( vecLen++, p );
530  --nz;
531  }
532  }
533  else // nneg == 0
534  {
535  vec.Initialize( 1 );
537  p->SetDefinition( aKaonZL );
538  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
539  vec.SetElement( vecLen++, p );
540  --nz;
541  }
542  }
543  else // nz == 0
544  {
545  if( nneg > 0 )
546  {
547  vec.Initialize( 1 );
549  p->SetDefinition( aKaonMinus );
550  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
551  vec.SetElement( vecLen++, p );
552  --nneg;
553  }
554  }
555  currentParticle.SetMass( 0.0 );
556  targetParticle.SetMass( 0.0 );
557  }
558 
559  SetUpPions( np, nneg, nz, vec, vecLen );
560  return;
561 }
562 
563  /* end of file */
564 
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double GetTotalMomentum() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const char * p
Definition: xmltok.h:285
const G4String & GetName() const
Definition: G4Material.hh:176
static G4KaonZeroLong * KaonZeroLong()
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4ParticleDefinition * GetDefinition() const
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void SetMass(const G4double mas)
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
static G4AntiLambda * AntiLambda()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
Hep3Vector unit() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
static G4AntiSigmaZero * AntiSigmaZero()
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
def test
Definition: mcscore.py:117
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
double mag() const
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const