Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RPGAntiSigmaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40  {
44  return &theParticleChange;
45  }
46 
47  // Choose the target particle
48 
49  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50 
51  if( verboseLevel > 1 )
52  {
53  const G4Material *targetMaterial = aTrack.GetMaterial();
54  G4cout << "G4RPGAntiSigmaMinusInelastic::ApplyYourself called" << G4endl;
55  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56  G4cout << "target material = " << targetMaterial->GetName() << ", ";
57  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58  << G4endl;
59  }
60 
61  // Fermi motion and evaporation
62  // As of Geant3, the Fermi energy calculation had not been Done
63 
64  G4double ek = originalIncident->GetKineticEnergy()/MeV;
65  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66  G4ReactionProduct modifiedOriginal;
67  modifiedOriginal = *originalIncident;
68 
69  G4double tkin = targetNucleus.Cinema( ek );
70  ek += tkin;
71  modifiedOriginal.SetKineticEnergy( ek*MeV );
72  G4double et = ek + amas;
73  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75  if( pp > 0.0 )
76  {
77  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78  modifiedOriginal.SetMomentum( momentum * (p/pp) );
79  }
80  //
81  // calculate black track energies
82  //
83  tkin = targetNucleus.EvaporationEffects( ek );
84  ek -= tkin;
85  modifiedOriginal.SetKineticEnergy( ek*MeV );
86  et = ek + amas;
87  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88  pp = modifiedOriginal.GetMomentum().mag()/MeV;
89  if( pp > 0.0 )
90  {
91  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92  modifiedOriginal.SetMomentum( momentum * (p/pp) );
93  }
94  G4ReactionProduct currentParticle = modifiedOriginal;
95  G4ReactionProduct targetParticle;
96  targetParticle = *originalTarget;
97  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99  G4bool incidentHasChanged = false;
100  G4bool targetHasChanged = false;
101  G4bool quasiElastic = false;
102  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103  G4int vecLen = 0;
104  vec.Initialize( 0 );
105 
106  const G4double cutOff = 0.1;
107  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
108  if( (currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
109  Cascade( vec, vecLen,
110  originalIncident, currentParticle, targetParticle,
111  incidentHasChanged, targetHasChanged, quasiElastic );
112 
113  CalculateMomenta( vec, vecLen,
114  originalIncident, originalTarget, modifiedOriginal,
115  targetNucleus, currentParticle, targetParticle,
116  incidentHasChanged, targetHasChanged, quasiElastic );
117 
118  SetUpChange( vec, vecLen,
119  currentParticle, targetParticle,
120  incidentHasChanged );
121 
122  delete originalTarget;
123  return &theParticleChange;
124 }
125 
126 
127 void G4RPGAntiSigmaMinusInelastic::Cascade(
129  G4int& vecLen,
130  const G4HadProjectile *originalIncident,
131  G4ReactionProduct &currentParticle,
132  G4ReactionProduct &targetParticle,
133  G4bool &incidentHasChanged,
134  G4bool &targetHasChanged,
135  G4bool &quasiElastic )
136 {
137  // Derived from H. Fesefeldt's original FORTRAN code CASASM
138  // AntiSigmaMinus undergoes interaction with nucleon within a nucleus. Check if it is
139  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140  // occurs and input particle is degraded in energy. No other particles are produced.
141  // If reaction is possible, find the correct number of pions/protons/neutrons
142  // produced using an interpolation to multiplicity data. Replace some pions or
143  // protons/neutrons by kaons or strange baryons according to the average
144  // multiplicity per Inelastic reaction.
145 
146  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148  const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
149  const G4double targetMass = targetParticle.GetMass()/MeV;
150  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
151  targetMass*targetMass +
152  2.0*targetMass*etOriginal );
153  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
154 
155  static G4ThreadLocal G4bool first = true;
156  const G4int numMul = 1200;
157  const G4int numMulA = 400;
158  const G4int numSec = 60;
159  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
160  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
161  static G4ThreadLocal G4double protmulA[numMulA], protnormA[numSec]; // proton constants
162  static G4ThreadLocal G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
163  // np = number of pi+, nneg = number of pi-, nz = number of pi0
164  G4int counter, nt=0, np=0, nneg=0, nz=0;
165  G4double test;
166  const G4double c = 1.25;
167  const G4double b[2] = { 0.7, 0.7 };
168  if( first ) // compute normalization constants, this will only be Done once
169  {
170  first = false;
171  G4int i;
172  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
173  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
174  counter = -1;
175  for( np=0; np<(numSec/3); ++np )
176  {
177  for( nneg=std::max(0,np-2); nneg<=np; ++nneg )
178  {
179  for( nz=0; nz<numSec/3; ++nz )
180  {
181  if( ++counter < numMul )
182  {
183  nt = np+nneg+nz;
184  if( nt>0 && nt<=numSec )
185  {
186  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187  protnorm[nt-1] += protmul[counter];
188  }
189  }
190  }
191  }
192  }
193  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
194  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
195  counter = -1;
196  for( np=0; np<numSec/3; ++np )
197  {
198  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
199  {
200  for( nz=0; nz<numSec/3; ++nz )
201  {
202  if( ++counter < numMul )
203  {
204  nt = np+nneg+nz;
205  if( nt>0 && nt<=numSec )
206  {
207  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208  neutnorm[nt-1] += neutmul[counter];
209  }
210  }
211  }
212  }
213  }
214  for( i=0; i<numSec; ++i )
215  {
216  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218  }
219  //
220  // do the same for annihilation channels
221  //
222  for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
223  for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
224  counter = -1;
225  for( np=2; np<(numSec/3); ++np )
226  {
227  nneg = np-2;
228  for( nz=0; nz<numSec/3; ++nz )
229  {
230  if( ++counter < numMulA )
231  {
232  nt = np+nneg+nz;
233  if( nt>1 && nt<=numSec )
234  {
235  protmulA[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
236  protnormA[nt-1] += protmulA[counter];
237  }
238  }
239  }
240  }
241  for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
242  for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
243  counter = -1;
244  for( np=1; np<numSec/3; ++np )
245  {
246  nneg = np-1;
247  for( nz=0; nz<numSec/3; ++nz )
248  {
249  if( ++counter < numMulA )
250  {
251  nt = np+nneg+nz;
252  if( nt>1 && nt<=numSec )
253  {
254  neutmulA[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
255  neutnormA[nt-1] += neutmulA[counter];
256  }
257  }
258  }
259  }
260  for( i=0; i<numSec; ++i )
261  {
262  if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
263  if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
264  }
265  } // end of initialization
266  const G4double expxu = 82.; // upper bound for arg. of exp
267  const G4double expxl = -expxu; // lower bound for arg. of exp
276  const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
277  0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
278  0.39,0.36,0.33,0.10,0.01};
279  G4int iplab = G4int( pOriginal/GeV*10.0 );
280  if( iplab > 9 )iplab = G4int( (pOriginal/GeV- 1.0)*5.0 ) + 10;
281  if( iplab > 14 )iplab = G4int( pOriginal/GeV- 2.0 ) + 15;
282  if( iplab > 23 )iplab = G4int( (pOriginal/GeV-10.0)/10.0 ) + 23;
283  if( iplab > 24 )iplab = 24;
284  if( G4UniformRand() > anhl[iplab] )
285  {
286  if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
287  {
288  quasiElastic = true;
289  return;
290  }
291  G4double n, anpn;
292  GetNormalizationConstant( availableEnergy, n, anpn );
293  G4double ran = G4UniformRand();
294  G4double dum, excs = 0.0;
295  if( targetParticle.GetDefinition() == aProton )
296  {
297  counter = -1;
298  for( np=0; np<numSec/3 && ran>=excs; ++np )
299  {
300  for( nneg=std::max(0,np-2); nneg<=np && ran>=excs; ++nneg )
301  {
302  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
303  {
304  if( ++counter < numMul )
305  {
306  nt = np+nneg+nz;
307  if( nt>0 && nt<=numSec )
308  {
309  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
311  if( std::fabs(dum) < 1.0 )
312  {
313  if( test >= 1.0e-10 )excs += dum*test;
314  }
315  else
316  excs += dum*test;
317  }
318  }
319  }
320  }
321  }
322  if( ran >= excs ) // 3 previous loops continued to the end
323  {
324  quasiElastic = true;
325  return;
326  }
327  np--; nneg--; nz--;
328  G4int ncht = std::min( 3, std::max( 1, np-nneg+1 ) );
329  switch( ncht )
330  {
331  case 1:
332  break;
333  case 2:
334  if( G4UniformRand() < 0.5 )
335  {
336  targetParticle.SetDefinitionAndUpdateE( aNeutron );
337  targetHasChanged = true;
338  }
339  else
340  {
341  if( G4UniformRand() < 0.5 )
342  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
343  else
344  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
345  incidentHasChanged = true;
346  }
347  break;
348  case 3:
349  if( G4UniformRand() < 0.5 )
350  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
351  else
352  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
353  incidentHasChanged = true;
354  targetParticle.SetDefinitionAndUpdateE( aNeutron );
355  targetHasChanged = true;
356  break;
357  }
358  }
359  else // target must be a neutron
360  {
361  counter = -1;
362  for( np=0; np<numSec/3 && ran>=excs; ++np )
363  {
364  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
365  {
366  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
367  {
368  if( ++counter < numMul )
369  {
370  nt = np+nneg+nz;
371  if( nt>0 && nt<=numSec )
372  {
373  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
374  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
375  if( std::fabs(dum) < 1.0 )
376  {
377  if( test >= 1.0e-10 )excs += dum*test;
378  }
379  else
380  excs += dum*test;
381  }
382  }
383  }
384  }
385  }
386  if( ran >= excs ) // 3 previous loops continued to the end
387  {
388  quasiElastic = true;
389  return;
390  }
391  np--; nneg--; nz--;
392  G4int ncht = std::min( 3, std::max( 1, np-nneg+2 ) );
393  switch( ncht )
394  {
395  case 1:
396  {
397  targetParticle.SetDefinitionAndUpdateE( aProton );
398  targetHasChanged = true;
399  }
400  break;
401  case 2:
402  if( G4UniformRand() < 0.5 )
403  {
404  if( G4UniformRand() < 0.5 )
405  {
406  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
407  incidentHasChanged = true;
408  targetParticle.SetDefinitionAndUpdateE( aProton );
409  targetHasChanged = true;
410  }
411  }
412  else
413  {
414  if( G4UniformRand() < 0.5 )
415  {
416  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
417  incidentHasChanged = true;
418  targetParticle.SetDefinitionAndUpdateE( aProton );
419  targetHasChanged = true;
420  }
421  }
422  break;
423  case 3:
424  if( G4UniformRand() < 0.5 )
425  currentParticle.SetDefinitionAndUpdateE( anAntiLambda );
426  else
427  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
428  incidentHasChanged = true;
429  break;
430  }
431  }
432  }
433  else // random number <= anhl[iplab]
434  {
435  if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
436  {
437  quasiElastic = true;
438  return;
439  }
440  G4double n, anpn;
441  GetNormalizationConstant( -centerofmassEnergy, n, anpn );
442  G4double ran = G4UniformRand();
443  G4double dum, excs = 0.0;
444  if( targetParticle.GetDefinition() == aProton )
445  {
446  counter = -1;
447  for( np=2; np<numSec/3 && ran>=excs; ++np )
448  {
449  nneg=np-2;
450  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
451  {
452  if( ++counter < numMulA )
453  {
454  nt = np+nneg+nz;
455  if( nt>1 && nt<=numSec )
456  {
457  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
458  dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
459  if( std::fabs(dum) < 1.0 )
460  {
461  if( test >= 1.0e-10 )excs += dum*test;
462  }
463  else
464  excs += dum*test;
465  }
466  }
467  }
468  }
469  if( ran >= excs ) // 3 previous loops continued to the end
470  {
471  quasiElastic = true;
472  return;
473  }
474  np--; nz--;
475  }
476  else // target must be a neutron
477  {
478  counter = -1;
479  for( np=1; np<numSec/3 && ran>=excs; ++np )
480  {
481  nneg = np-1;
482  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
483  {
484  if( ++counter < numMulA )
485  {
486  nt = np+nneg+nz;
487  if( nt>1 && nt<=numSec )
488  {
489  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
490  dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
491  if( std::fabs(dum) < 1.0 )
492  {
493  if( test >= 1.0e-10 )excs += dum*test;
494  }
495  else
496  excs += dum*test;
497  }
498  }
499  }
500  }
501  if( ran >= excs ) // 3 previous loops continued to the end
502  {
503  quasiElastic = true;
504  return;
505  }
506  np--; nz--;
507  }
508  if( nz > 0 )
509  {
510  if( nneg > 0 )
511  {
512  if( G4UniformRand() < 0.5 )
513  {
514  vec.Initialize( 1 );
516  p->SetDefinition( aKaonMinus );
517  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
518  vec.SetElement( vecLen++, p );
519  --nneg;
520  }
521  else // random number >= 0.5
522  {
523  vec.Initialize( 1 );
525  p->SetDefinition( aKaonZL );
526  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
527  vec.SetElement( vecLen++, p );
528  --nz;
529  }
530  }
531  else // nneg == 0
532  {
533  vec.Initialize( 1 );
535  p->SetDefinition( aKaonZL );
536  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
537  vec.SetElement( vecLen++, p );
538  --nz;
539  }
540  }
541  else // nz == 0
542  {
543  if( nneg > 0 )
544  {
545  vec.Initialize( 1 );
547  p->SetDefinition( aKaonMinus );
548  (G4UniformRand() < 0.5) ? p->SetSide( -1 ) : p->SetSide( 1 );
549  vec.SetElement( vecLen++, p );
550  --nneg;
551  }
552  }
553  currentParticle.SetMass( 0.0 );
554  targetParticle.SetMass( 0.0 );
555  }
556 
557  SetUpPions( np, nneg, nz, vec, vecLen );
558  return;
559 }
560 
561  /* end of file */
562 
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:76
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double GetTotalMomentum() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const char * p
Definition: xmltok.h:285
const G4String & GetName() const
Definition: G4Material.hh:176
static G4KaonZeroLong * KaonZeroLong()
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4ParticleDefinition * GetDefinition() const
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void SetMass(const G4double mas)
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
static G4AntiLambda * AntiLambda()
T max(const T t1, const T t2)
brief Return the largest of the two arguments
Hep3Vector unit() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
static G4AntiSigmaZero * AntiSigmaZero()
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
void SetDefinition(G4ParticleDefinition *aParticleDefinition)
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
def test
Definition: mcscore.py:117
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
double mag() const
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const