Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RPGAntiOmegaMinusInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 //
29 // NOTE: The FORTRAN version of the cascade, CASAOM, simply called the
30 // routine for the OmegaMinus particle. Hence, the Cascade function
31 // below is just a copy of the Cascade from the OmegaMinus particle.
32 
34 #include "G4PhysicalConstants.hh"
35 #include "G4SystemOfUnits.hh"
36 #include "Randomize.hh"
37 
40  G4Nucleus &targetNucleus )
41 {
42  const G4HadProjectile *originalIncident = &aTrack;
43  if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
44  {
48  return &theParticleChange;
49  }
50 
51  // create the target particle
52 
53  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
54 
55  if( verboseLevel > 1 )
56  {
57  const G4Material *targetMaterial = aTrack.GetMaterial();
58  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
59  G4cout << "target material = " << targetMaterial->GetName() << ", ";
60  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
61  << G4endl;
62  }
63  //
64  // Fermi motion and evaporation
65  // As of Geant3, the Fermi energy calculation had not been Done
66  //
67  G4double ek = originalIncident->GetKineticEnergy()/MeV;
68  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
69  G4ReactionProduct modifiedOriginal;
70  modifiedOriginal = *originalIncident;
71 
72  G4double tkin = targetNucleus.Cinema( ek );
73  ek += tkin;
74  modifiedOriginal.SetKineticEnergy( ek*MeV );
75  G4double et = ek + amas;
76  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
77  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
78  if( pp > 0.0 )
79  {
80  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
81  modifiedOriginal.SetMomentum( momentum * (p/pp) );
82  }
83  //
84  // calculate black track energies
85  //
86  tkin = targetNucleus.EvaporationEffects( ek );
87  ek -= tkin;
88  modifiedOriginal.SetKineticEnergy( ek*MeV );
89  et = ek + amas;
90  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
91  pp = modifiedOriginal.GetMomentum().mag()/MeV;
92  if( pp > 0.0 )
93  {
94  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
95  modifiedOriginal.SetMomentum( momentum * (p/pp) );
96  }
97  G4ReactionProduct currentParticle = modifiedOriginal;
98  G4ReactionProduct targetParticle;
99  targetParticle = *originalTarget;
100  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
101  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
102  G4bool incidentHasChanged = false;
103  G4bool targetHasChanged = false;
104  G4bool quasiElastic = false;
105  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
106  G4int vecLen = 0;
107  vec.Initialize( 0 );
108 
109  const G4double cutOff = 0.1;
110  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
111 
112  if( (currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
113  Cascade( vec, vecLen,
114  originalIncident, currentParticle, targetParticle,
115  incidentHasChanged, targetHasChanged, quasiElastic );
116 
117  CalculateMomenta( vec, vecLen,
118  originalIncident, originalTarget, modifiedOriginal,
119  targetNucleus, currentParticle, targetParticle,
120  incidentHasChanged, targetHasChanged, quasiElastic );
121 
122  SetUpChange( vec, vecLen,
123  currentParticle, targetParticle,
124  incidentHasChanged );
125 
126  delete originalTarget;
127  return &theParticleChange;
128 }
129 
130 
131 void
132 G4RPGAntiOmegaMinusInelastic::Cascade(G4FastVector<G4ReactionProduct,GHADLISTSIZE> &vec,
133  G4int& vecLen,
134  const G4HadProjectile* originalIncident,
135  G4ReactionProduct& currentParticle,
136  G4ReactionProduct& targetParticle,
137  G4bool& incidentHasChanged,
138  G4bool& targetHasChanged,
139  G4bool& quasiElastic)
140 {
141  // Derived from H. Fesefeldt's original FORTRAN code CASOM
142  // AntiOmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
143  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
144  // occurs and input particle is degraded in energy. No other particles are produced.
145  // If reaction is possible, find the correct number of pions/protons/neutrons
146  // produced using an interpolation to multiplicity data. Replace some pions or
147  // protons/neutrons by kaons or strange baryons according to the average
148  // multiplicity per Inelastic reaction.
149 
150  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
151  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
152  const G4double targetMass = targetParticle.GetMass()/MeV;
153  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
154  targetMass*targetMass +
155  2.0*targetMass*etOriginal );
156  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
157  if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
158  // not energetically possible to produce pion(s)
159  quasiElastic = true;
160  return;
161  }
162  static G4ThreadLocal G4bool first = true;
163  const G4int numMul = 1200;
164  const G4int numSec = 60;
165  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
166  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
167 
168  // np = number of pi+, nneg = number of pi-, nz = number of pi0
169  G4int counter, nt=0, np=0, nneg=0, nz=0;
170  G4double test;
171  const G4double c = 1.25;
172  const G4double b[] = { 0.7, 0.7 };
173  if (first) { // Computation of normalization constants will only be done once
174  first = false;
175  G4int i;
176  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
177  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
178  counter = -1;
179  for( np=0; np<(numSec/3); ++np )
180  {
181  for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
182  {
183  for( nz=0; nz<numSec/3; ++nz )
184  {
185  if( ++counter < numMul )
186  {
187  nt = np+nneg+nz;
188  if( nt>0 && nt<=numSec )
189  {
190  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
191  protnorm[nt-1] += protmul[counter];
192  }
193  }
194  }
195  }
196  }
197  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
198  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
199  counter = -1;
200  for( np=0; np<numSec/3; ++np )
201  {
202  for( nneg=np; nneg<=(np+2); ++nneg )
203  {
204  for( nz=0; nz<numSec/3; ++nz )
205  {
206  if( ++counter < numMul )
207  {
208  nt = np+nneg+nz;
209  if( nt>0 && nt<=numSec )
210  {
211  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
212  neutnorm[nt-1] += neutmul[counter];
213  }
214  }
215  }
216  }
217  }
218  for( i=0; i<numSec; ++i )
219  {
220  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
221  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
222  }
223  } // end of initialization
224 
225  const G4double expxu = 82.; // upper bound for arg. of exp
226  const G4double expxl = -expxu; // lower bound for arg. of exp
232  G4double n, anpn;
233  GetNormalizationConstant( availableEnergy, n, anpn );
234  G4double ran = G4UniformRand();
235  G4double dum, excs = 0.0;
236  G4int nvefix = 0;
237  if( targetParticle.GetDefinition() == aProton )
238  {
239  counter = -1;
240  for( np=0; np<numSec/3 && ran>=excs; ++np )
241  {
242  for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
243  {
244  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
245  {
246  if( ++counter < numMul )
247  {
248  nt = np+nneg+nz;
249  if( nt>0 && nt<=numSec )
250  {
251  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
252  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
253  if( std::fabs(dum) < 1.0 )
254  {
255  if( test >= 1.0e-10 )excs += dum*test;
256  }
257  else
258  excs += dum*test;
259  }
260  }
261  }
262  }
263  }
264  if( ran >= excs ) // 3 previous loops continued to the end
265  {
266  quasiElastic = true;
267  return;
268  }
269  np--; nneg--; nz--;
270  //
271  // number of secondary mesons determined by kno distribution
272  // check for total charge of final state mesons to determine
273  // the kind of baryons to be produced, taking into account
274  // charge and strangeness conservation
275  //
276  if( np < nneg )
277  {
278  if( np+1 == nneg )
279  {
280  currentParticle.SetDefinitionAndUpdateE( aXiZero );
281  incidentHasChanged = true;
282  nvefix = 1;
283  }
284  else // charge mismatch
285  {
286  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
287  incidentHasChanged = true;
288  nvefix = 2;
289  }
290  }
291  else if( np > nneg )
292  {
293  targetParticle.SetDefinitionAndUpdateE( aNeutron );
294  targetHasChanged = true;
295  }
296  }
297  else // target must be a neutron
298  {
299  counter = -1;
300  for( np=0; np<numSec/3 && ran>=excs; ++np )
301  {
302  for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
303  {
304  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
305  {
306  if( ++counter < numMul )
307  {
308  nt = np+nneg+nz;
309  if( nt>0 && nt<=numSec )
310  {
311  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
312  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
313  if( std::fabs(dum) < 1.0 )
314  {
315  if( test >= 1.0e-10 )excs += dum*test;
316  }
317  else
318  excs += dum*test;
319  }
320  }
321  }
322  }
323  }
324  if( ran >= excs ) // 3 previous loops continued to the end
325  {
326  quasiElastic = true;
327  return;
328  }
329  np--; nneg--; nz--;
330  if( np+1 < nneg )
331  {
332  if( np+2 == nneg )
333  {
334  currentParticle.SetDefinitionAndUpdateE( aXiZero );
335  incidentHasChanged = true;
336  nvefix = 1;
337  }
338  else // charge mismatch
339  {
340  currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
341  incidentHasChanged = true;
342  nvefix = 2;
343  }
344  targetParticle.SetDefinitionAndUpdateE( aProton );
345  targetHasChanged = true;
346  }
347  else if( np+1 == nneg )
348  {
349  targetParticle.SetDefinitionAndUpdateE( aProton );
350  targetHasChanged = true;
351  }
352  }
353 
354  SetUpPions(np, nneg, nz, vec, vecLen);
355  for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
356  if (vec[i]->GetDefinition() == G4PionMinus::PionMinus() ) {
357  // correct the strangeness by replacing a pi- by a kaon-
358  if( nvefix >= 1 )vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
359  --nvefix;
360  }
361  }
362 
363  return;
364 }
365 
366  /* end of file */
367 
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double GetTotalMomentum() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const char * p
Definition: xmltok.h:285
const G4String & GetName() const
Definition: G4Material.hh:176
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
#define G4ThreadLocal
Definition: tls.hh:52
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4ParticleDefinition * GetDefinition() const
void SetStatusChange(G4HadFinalStateStatus aS)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4int n
const G4LorentzVector & Get4Momentum() const
G4double GetKineticEnergy() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
Hep3Vector unit() const
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
def test
Definition: mcscore.py:117
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
double mag() const
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetMass() const
G4double GetTotalEnergy() const