Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QMDCollision.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // 080602 Fix memory leaks by T. Koi
27 // 081120 Add deltaT in signature of CalKinematicsOfBinaryCollisions
28 // Add several required updating of Mean Filed
29 // Modified handling of absorption case by T. Koi
30 // 090126 Fix in absorption case by T. Koi
31 // 090331 Fix for gamma participant by T. Koi
32 //
33 #include "G4QMDCollision.hh"
34 #include "G4Scatterer.hh"
35 #include "G4PhysicalConstants.hh"
36 #include "G4SystemOfUnits.hh"
37 #include "Randomize.hh"
38 
40 : fdeltar ( 4.0 )
41 , fbcmax0 ( 1.323142 ) // NN maximum impact parameter
42 , fbcmax1 ( 2.523 ) // others maximum impact parameter
43 // , sig0 ( 55 ) // NN cross section
44 //110617 fix for gcc 4.6 compilation warnings
45 //, sig1 ( 200 ) // others cross section
46 , fepse ( 0.0001 )
47 {
48  //These two pointers will be set through SetMeanField method
49  theSystem=NULL;
50  theMeanField=NULL;
51  theScatterer = new G4Scatterer();
52 }
53 
54 /*
55 G4QMDCollision::G4QMDCollision( const G4QMDCollision& obj )
56 : fdeltar ( obj.fdeltar )
57 , fbcmax0 ( obj.fbcmax0 ) // NN maximum impact parameter
58 , fbcmax1 ( obj.fbcmax1 ) // others maximum impact parameter
59 , fepse ( obj.fepse )
60 {
61 
62  if ( obj.theSystem != NULL ) {
63  theSystem = new G4QMDSystem;
64  *theSystem = *obj.theSystem;
65  } else {
66  theSystem = NULL;
67  }
68  if ( obj.theMeanField != NULL ) {
69  theMeanField = new G4QMDMeanField;
70  *theMeanField = *obj.theMeanField;
71  } else {
72  theMeanField = NULL;
73  }
74  theScatterer = new G4Scatterer();
75  *theScatterer = *obj.theScatterer;
76 }
77 
78 G4QMDCollision & G4QMDCollision::operator= ( const G4QMDCollision& obj)
79 {
80  fdeltar = obj.fdeltar;
81  fbcmax0 = obj.fbcmax1;
82  fepse = obj.fepse;
83 
84  if ( obj.theSystem != NULL ) {
85  delete theSystem;
86  theSystem = new G4QMDSystem;
87  *theSystem = *obj.theSystem;
88  } else {
89  theSystem = NULL;
90  }
91  if ( obj.theMeanField != NULL ) {
92  delete theMeanField;
93  theMeanField = new G4QMDMeanField;
94  *theMeanField = *obj.theMeanField;
95  } else {
96  theMeanField = NULL;
97  }
98  delete theScatterer;
99  theScatterer = new G4Scatterer();
100  *theScatterer = *obj.theScatterer;
101 
102  return *this;
103 }
104 */
105 
106 
108 {
109  //if ( theSystem != NULL ) delete theSystem;
110  //if ( theMeanField != NULL ) delete theMeanField;
111  delete theScatterer;
112 }
113 
114 
116 {
117  G4double deltaT = dt;
118 
119  G4int n = theSystem->GetTotalNumberOfParticipant();
120 //081118
121  //G4int nb = 0;
122  for ( G4int i = 0 ; i < n ; i++ )
123  {
124  theSystem->GetParticipant( i )->UnsetHitMark();
125  theSystem->GetParticipant( i )->UnsetHitMark();
126  //nb += theSystem->GetParticipant( i )->GetBaryonNumber();
127  }
128  //G4cout << "nb = " << nb << " n = " << n << G4endl;
129 
130 
131 //071101
132  for ( G4int i = 0 ; i < n ; i++ )
133  {
134 
135  //std::cout << i << " " << theSystem->GetParticipant( i )->GetDefinition()->GetParticleName() << " " << theSystem->GetParticipant( i )->GetPosition() << std::endl;
136 
137  if ( theSystem->GetParticipant( i )->GetDefinition()->IsShortLived() )
138  {
139 
140  G4bool decayed = false;
141 
142  G4ParticleDefinition* pd0 = theSystem->GetParticipant( i )->GetDefinition();
143  G4ThreeVector p0 = theSystem->GetParticipant( i )->GetMomentum();
144  G4ThreeVector r0 = theSystem->GetParticipant( i )->GetPosition();
145 
146  G4LorentzVector p40 = theSystem->GetParticipant( i )->Get4Momentum();
147 
148  G4double eini = theMeanField->GetTotalPotential() + p40.e();
149 
150  G4int n0 = theSystem->GetTotalNumberOfParticipant();
151  G4int i0 = 0;
152 
153  G4bool isThisEnergyOK = false;
154 
155  for ( G4int ii = 0 ; ii < 4 ; ii++ )
156  {
157 
158  //G4LorentzVector p4 = theSystem->GetParticipant( i )->Get4Momentum();
159  G4LorentzVector p400 = p40;
160 
161  p400 *= GeV;
162  //G4KineticTrack kt( theSystem->GetParticipant( i )->GetDefinition() , 0.0 , (theSystem->GetParticipant( i )->GetPosition())*fermi , p4 );
163  G4KineticTrack kt( pd0 , 0.0 , r0*fermi , p400 );
164  //std::cout << "G4KineticTrack " << i << " " << kt.GetDefinition()->GetParticleName() << kt.GetPosition() << std::endl;
165  G4KineticTrackVector* secs = NULL;
166  secs = kt.Decay();
167  G4int id = 0;
168  G4double et = 0;
169  if ( secs )
170  {
171  for ( G4KineticTrackVector::iterator it
172  = secs->begin() ; it != secs->end() ; it++ )
173  {
174 /*
175  G4cout << "G4KineticTrack"
176  << " " << (*it)->GetDefinition()->GetParticleName()
177  << " " << (*it)->Get4Momentum()
178  << " " << (*it)->GetPosition()/fermi
179  << G4endl;
180 */
181  if ( id == 0 )
182  {
183  theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
184  theSystem->GetParticipant( i )->SetMomentum( (*it)->Get4Momentum().v()/GeV );
185  theSystem->GetParticipant( i )->SetPosition( (*it)->GetPosition()/fermi );
186  //theMeanField->Cal2BodyQuantities( i );
187  et += (*it)->Get4Momentum().e()/GeV;
188  }
189  if ( id > 0 )
190  {
191  // Append end;
192  theSystem->SetParticipant ( new G4QMDParticipant ( (*it)->GetDefinition() , (*it)->Get4Momentum().v()/GeV , (*it)->GetPosition()/fermi ) );
193  et += (*it)->Get4Momentum().e()/GeV;
194  if ( id > 1 )
195  {
196  //081118
197  //G4cout << "G4QMDCollision id >2; id= " << id << G4endl;
198  }
199  }
200  id++; // number of daughter particles
201 
202  delete *it;
203  }
204 
205  theMeanField->Update();
206  i0 = id-1; // 0 enter to i
207 
208  delete secs;
209  }
210 
211 // EnergyCheck
212 
213  G4double efin = theMeanField->GetTotalPotential() + et;
214  //std::cout << std::abs ( eini - efin ) - fepse << std::endl;
215 // std::cout << std::abs ( eini - efin ) - fepse*10 << std::endl;
216 // *10 TK
217  if ( std::abs ( eini - efin ) < fepse*10 )
218  {
219  // Energy OK
220  isThisEnergyOK = true;
221  break;
222  }
223  else
224  {
225 
226  theSystem->GetParticipant( i )->SetDefinition( pd0 );
227  theSystem->GetParticipant( i )->SetPosition( r0 );
228  theSystem->GetParticipant( i )->SetMomentum( p0 );
229 
230  for ( G4int i0i = 0 ; i0i < id-1 ; i0i++ )
231  {
232  //081118
233  //std::cout << "Decay Energitically Blocked deleteing " << i0i+n0 << std::endl;
234  theSystem->DeleteParticipant( i0i+n0 );
235  }
236  //081103
237  theMeanField->Update();
238  }
239 
240  }
241 
242 
243 // Pauli Check
244  if ( isThisEnergyOK == true )
245  {
246  if ( theMeanField->IsPauliBlocked ( i ) != true )
247  {
248 
249  G4bool allOK = true;
250  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
251  {
252  if ( theMeanField->IsPauliBlocked ( i0i+n0 ) == true )
253  {
254  allOK = false;
255  break;
256  }
257  }
258 
259  if ( allOK )
260  {
261  decayed = true; //Decay Succeeded
262  }
263  }
264 
265  }
266 //
267 
268  if ( decayed )
269  {
270  //081119
271  //G4cout << "Decay Suceeded! " << std::endl;
272  theSystem->GetParticipant( i )->SetHitMark();
273  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
274  {
275  theSystem->GetParticipant( i0i+n0 )->SetHitMark();
276  }
277 
278  }
279  else
280  {
281 
282 // Decay Blocked and re-enter orginal participant;
283 
284  if ( isThisEnergyOK == true ) // for false case already done
285  {
286 
287  theSystem->GetParticipant( i )->SetDefinition( pd0 );
288  theSystem->GetParticipant( i )->SetPosition( r0 );
289  theSystem->GetParticipant( i )->SetMomentum( p0 );
290 
291  for ( G4int i0i = 0 ; i0i < i0 ; i0i++ )
292  {
293  //081118
294  //std::cout << "Decay Blocked deleteing " << i0i+n0 << std::endl;
295  theSystem->DeleteParticipant( i0i+n0 );
296  }
297  //081103
298  theMeanField->Update();
299  }
300 
301  }
302 
303  } //shortlive
304  } // go next participant
305 //071101
306 
307 
308  n = theSystem->GetTotalNumberOfParticipant();
309 
310 //081118
311  //for ( G4int i = 1 ; i < n ; i++ )
312  for ( G4int i = 1 ; i < theSystem->GetTotalNumberOfParticipant() ; i++ )
313  {
314 
315  //std::cout << "Collision i " << i << std::endl;
316  if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
317 
318  G4ThreeVector ri = theSystem->GetParticipant( i )->GetPosition();
319  G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
320  G4double rmi = theSystem->GetParticipant( i )->GetMass();
321  G4ParticleDefinition* pdi = theSystem->GetParticipant( i )->GetDefinition();
322 //090331 gamma
323  if ( pdi->GetPDGMass() == 0.0 ) continue;
324 
325  //std::cout << " p4i00 " << p4i << std::endl;
326  for ( G4int j = 0 ; j < i ; j++ )
327  {
328 
329 
330 /*
331  G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisProjectile() << G4endl;
332  G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisProjectile() << G4endl;
333  G4cout << "Collision " << i << " " << theSystem->GetParticipant( i )->IsThisTarget() << G4endl;
334  G4cout << "Collision " << j << " " << theSystem->GetParticipant( j )->IsThisTarget() << G4endl;
335 */
336 
337  // Only 1 Collision allowed for each particle in a time step.
338  //081119
339  if ( theSystem->GetParticipant( i )->IsThisHit() ) continue;
340  if ( theSystem->GetParticipant( j )->IsThisHit() ) continue;
341 
342  //std::cout << "Collision " << i << " " << j << std::endl;
343 
344  // Do not allow collision between nucleons in target/projectile til its first collision.
345  if ( theSystem->GetParticipant( i )->IsThisProjectile() )
346  {
347  if ( theSystem->GetParticipant( j )->IsThisProjectile() ) continue;
348  }
349  else if ( theSystem->GetParticipant( i )->IsThisTarget() )
350  {
351  if ( theSystem->GetParticipant( j )->IsThisTarget() ) continue;
352  }
353 
354 
355  G4ThreeVector rj = theSystem->GetParticipant( j )->GetPosition();
356  G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
357  G4double rmj = theSystem->GetParticipant( j )->GetMass();
358  G4ParticleDefinition* pdj = theSystem->GetParticipant( j )->GetDefinition();
359 //090331 gamma
360  if ( pdj->GetPDGMass() == 0.0 ) continue;
361 
362  G4double rr2 = theMeanField->GetRR2( i , j );
363 
364 // Here we assume elab (beam momentum less than 5 GeV/n )
365  if ( rr2 > fdeltar*fdeltar ) continue;
366 
367  //G4double s = (p4i+p4j)*(p4i+p4j);
368  //G4double srt = std::sqrt ( s );
369 
370  G4double srt = std::sqrt( (p4i+p4j)*(p4i+p4j) );
371 
372  G4double cutoff = 0.0;
373  G4double fbcmax = 0.0;
374  //110617 fix for gcc 4.6 compilation warnings
375  //G4double sig = 0.0;
376 
377  if ( rmi < 0.94 && rmj < 0.94 )
378  {
379 // nucleon or pion case
380  cutoff = rmi + rmj + 0.02;
381  fbcmax = fbcmax0;
382  //110617 fix for gcc 4.6 compilation warnings
383  //sig = sig0;
384  }
385  else
386  {
387  cutoff = rmi + rmj;
388  fbcmax = fbcmax1;
389  //110617 fix for gcc compilation warnings
390  //sig = sig1;
391  }
392 
393  //std::cout << "Collision cutoff " << i << " " << j << " " << cutoff << std::endl;
394  if ( srt < cutoff ) continue;
395 
396  G4ThreeVector dr = ri - rj;
397  G4double rsq = dr*dr;
398 
399  G4double pij = p4i*p4j;
400  G4double pidr = p4i.vect()*dr;
401  G4double pjdr = p4j.vect()*dr;
402 
403  G4double aij = 1.0 - ( rmi*rmj /pij ) * ( rmi*rmj /pij );
404  G4double bij = pidr / rmi - pjdr*rmi/pij;
405  G4double cij = rsq + ( pidr / rmi ) * ( pidr / rmi );
406  G4double brel = std::sqrt ( std::abs ( cij - bij*bij/aij ) );
407 
408  if ( brel > fbcmax ) continue;
409  //std::cout << "collisions3 " << std::endl;
410 
411  G4double bji = -pjdr/rmj + pidr * rmj /pij;
412 
413  G4double ti = ( pidr/rmi - bij / aij ) * p4i.e() / rmi;
414  G4double tj = (-pjdr/rmj - bji / aij ) * p4j.e() / rmj;
415 
416 
417 /*
418  G4cout << "collisions4 p4i " << p4i << G4endl;
419  G4cout << "collisions4 ri " << ri << G4endl;
420  G4cout << "collisions4 p4j " << p4j << G4endl;
421  G4cout << "collisions4 rj " << rj << G4endl;
422  G4cout << "collisions4 dr " << dr << G4endl;
423  G4cout << "collisions4 pij " << pij << G4endl;
424  G4cout << "collisions4 aij " << aij << G4endl;
425  G4cout << "collisions4 bij bji " << bij << " " << bji << G4endl;
426  G4cout << "collisions4 pidr pjdr " << pidr << " " << pjdr << G4endl;
427  G4cout << "collisions4 p4i.e() p4j.e() " << p4i.e() << " " << p4j.e() << G4endl;
428  G4cout << "collisions4 rmi rmj " << rmi << " " << rmj << G4endl;
429  G4cout << "collisions4 " << ti << " " << tj << G4endl;
430 */
431  if ( std::abs ( ti + tj ) > deltaT ) continue;
432  //std::cout << "collisions4 " << std::endl;
433 
434  G4ThreeVector beta = ( p4i + p4j ).boostVector();
435 
436  G4LorentzVector p = p4i;
437  G4LorentzVector p4icm = p.boost( p.findBoostToCM ( p4j ) );
438  G4ThreeVector pcm = p4icm.vect();
439 
440  G4double prcm = pcm.mag();
441 
442  if ( prcm <= 0.00001 ) continue;
443  //std::cout << "collisions5 " << std::endl;
444 
445  G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollision ( i , j ) ); // Use Geant4 Collision Library
446  //G4bool energetically_forbidden = !( CalFinalStateOfTheBinaryCollisionJQMD ( sig , cutoff , pcm , prcm , srt, beta , gamma , i , j ) ); // JQMD Elastic
447 
448 /*
449  G4bool pauli_blocked = false;
450  if ( energetically_forbidden == false ) // result true
451  {
452  if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
453  {
454  pauli_blocked = true;
455  //std::cout << "G4QMDRESULT Collsion Pauli Blocked " << std::endl;
456  }
457  }
458  else
459  {
460  if ( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true )
461  pauli_blocked = false;
462  //std::cout << "G4QMDRESULT Collsion Blocked " << std::endl;
463  }
464 */
465 
466 /*
467  G4cout << "G4QMDRESULT Collsion initial p4 i and j "
468  << p4i << " " << p4j
469  << G4endl;
470 */
471 // 081118
472  //if ( energetically_forbidden == true || pauli_blocked == true )
473  if ( energetically_forbidden == true )
474  {
475 
476  //G4cout << " energetically_forbidden " << G4endl;
477 // Collsion not allowed then re enter orginal participants
478 // Now only momentum, becasuse we only consider elastic scattering of nucleons
479 
480  theSystem->GetParticipant( i )->SetMomentum( p4i.vect() );
481  theSystem->GetParticipant( i )->SetDefinition( pdi );
482  theSystem->GetParticipant( i )->SetPosition( ri );
483 
484  theSystem->GetParticipant( j )->SetMomentum( p4j.vect() );
485  theSystem->GetParticipant( j )->SetDefinition( pdj );
486  theSystem->GetParticipant( j )->SetPosition( rj );
487 
488  theMeanField->Cal2BodyQuantities( i );
489  theMeanField->Cal2BodyQuantities( j );
490 
491  }
492  else
493  {
494 
495 
496  G4bool absorption = false;
497  if ( n == theSystem->GetTotalNumberOfParticipant()+1 ) absorption = true;
498  if ( absorption )
499  {
500  //G4cout << "Absorption happend " << G4endl;
501  i = i-1;
502  n = n-1;
503  }
504 
505 // Collsion allowed (really happened)
506 
507  // Unset Projectile/Target flag
508  theSystem->GetParticipant( i )->UnsetInitialMark();
509  if ( !absorption ) theSystem->GetParticipant( j )->UnsetInitialMark();
510 
511  theSystem->GetParticipant( i )->SetHitMark();
512  if ( !absorption ) theSystem->GetParticipant( j )->SetHitMark();
513 
514  theSystem->IncrementCollisionCounter();
515 
516 /*
517  G4cout << "G4QMDRESULT Collsion Really Happened between "
518  << i << " and " << j
519  << G4endl;
520  G4cout << "G4QMDRESULT Collsion initial p4 i and j "
521  << p4i << " " << p4j
522  << G4endl;
523  G4cout << "G4QMDRESULT Collsion after p4 i and j "
524  << theSystem->GetParticipant( i )->Get4Momentum()
525  << " "
526  << theSystem->GetParticipant( j )->Get4Momentum()
527  << G4endl;
528  G4cout << "G4QMDRESULT Collsion Diff "
529  << p4i + p4j - theSystem->GetParticipant( i )->Get4Momentum() - theSystem->GetParticipant( j )->Get4Momentum()
530  << G4endl;
531  G4cout << "G4QMDRESULT Collsion initial r i and j "
532  << ri << " " << rj
533  << G4endl;
534  G4cout << "G4QMDRESULT Collsion after r i and j "
535  << theSystem->GetParticipant( i )->GetPosition()
536  << " "
537  << theSystem->GetParticipant( j )->GetPosition()
538  << G4endl;
539 */
540 
541 
542  }
543 
544  }
545 
546  }
547 
548 
549 }
550 
551 
552 
554 {
555 
556 //081103
557  //G4cout << "CalFinalStateOfTheBinaryCollision " << i << " " << j << " " << theSystem->GetTotalNumberOfParticipant() << G4endl;
558 
559  G4bool result = false;
560  G4bool energyOK = false;
561  G4bool pauliOK = false;
562  G4bool abs = false;
563  G4QMDParticipant* absorbed = NULL;
564 
565  G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
566  G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
567 
568 //071031
569 
570  G4double epot = theMeanField->GetTotalPotential();
571 
572  G4double eini = epot + p4i.e() + p4j.e();
573 
574 //071031
575  // will use KineticTrack
576  G4ParticleDefinition* pdi0 =theSystem->GetParticipant( i )->GetDefinition();
577  G4ParticleDefinition* pdj0 =theSystem->GetParticipant( j )->GetDefinition();
578  G4LorentzVector p4i0 = p4i*GeV;
579  G4LorentzVector p4j0 = p4j*GeV;
580  G4ThreeVector ri0 = ( theSystem->GetParticipant( i )->GetPosition() )*fermi;
581  G4ThreeVector rj0 = ( theSystem->GetParticipant( j )->GetPosition() )*fermi;
582 
583  for ( G4int iitry = 0 ; iitry < 4 ; iitry++ )
584  {
585 
586  abs = false;
587 
588  G4KineticTrack kt1( pdi0 , 0.0 , ri0 , p4i0 );
589  G4KineticTrack kt2( pdj0 , 0.0 , rj0 , p4j0 );
590 
591  G4LorentzVector p4ix_new;
592  G4LorentzVector p4jx_new;
593  G4KineticTrackVector* secs = NULL;
594  secs = theScatterer->Scatter( kt1 , kt2 );
595 
596  //std::cout << "G4QMDSCATTERER BEFORE " << kt1.GetDefinition()->GetParticleName() << " " << kt1.Get4Momentum()/GeV << " " << kt1.GetPosition()/fermi << std::endl;
597  //std::cout << "G4QMDSCATTERER BEFORE " << kt2.GetDefinition()->GetParticleName() << " " << kt2.Get4Momentum()/GeV << " " << kt2.GetPosition()/fermi << std::endl;
598  //std::cout << "THESCATTERER " << theScatterer->GetCrossSection ( kt1 , kt2 )/millibarn << " " << elastic << " " << sig << std::endl;
599 
600 
601  if ( secs )
602  {
603  G4int iti = 0;
604  if ( secs->size() == 2 )
605  {
606  for ( G4KineticTrackVector::iterator it
607  = secs->begin() ; it != secs->end() ; it++ )
608  {
609  if ( iti == 0 )
610  {
611  theSystem->GetParticipant( i )->SetDefinition( (*it)->GetDefinition() );
612  p4ix_new = (*it)->Get4Momentum()/GeV;
613  //std::cout << "THESCATTERER " << (*it)->GetDefinition()->GetParticleName() << std::endl;
614  theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
615  }
616  if ( iti == 1 )
617  {
618  theSystem->GetParticipant( j )->SetDefinition( (*it)->GetDefinition() );
619  p4jx_new = (*it)->Get4Momentum()/GeV;
620  //std::cout << "THESCATTERER " << p4jx_new.e()-p4jx_new.m() << std::endl;
621  theSystem->GetParticipant( j )->SetMomentum( p4jx_new.v() );
622  }
623  //std::cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << std::endl;
624  iti++;
625  }
626  }
627  else if ( secs->size() == 1 )
628  {
629 //081118
630  abs = true;
631  //G4cout << "G4QMDCollision pion absrorption " << secs->front()->GetDefinition()->GetParticleName() << G4endl;
632  //secs->front()->Decay();
633  theSystem->GetParticipant( i )->SetDefinition( secs->front()->GetDefinition() );
634  p4ix_new = secs->front()->Get4Momentum()/GeV;
635  theSystem->GetParticipant( i )->SetMomentum( p4ix_new.v() );
636 
637  }
638 
639 //081118
640  if ( secs->size() > 2 )
641  {
642 
643  G4cout << "G4QMDCollision secs size > 2; " << secs->size() << G4endl;
644 
645  for ( G4KineticTrackVector::iterator it
646  = secs->begin() ; it != secs->end() ; it++ )
647  {
648  G4cout << "G4QMDSCATTERER AFTER " << (*it)->GetDefinition()->GetParticleName() << " " << (*it)->Get4Momentum()/GeV << G4endl;
649  }
650 
651  }
652 
653  // deleteing KineticTrack
654  for ( G4KineticTrackVector::iterator it
655  = secs->begin() ; it != secs->end() ; it++ )
656  {
657  delete *it;
658  }
659 
660  delete secs;
661  }
662 //071031
663 
664  if ( !abs )
665  {
666  theMeanField->Cal2BodyQuantities( i );
667  theMeanField->Cal2BodyQuantities( j );
668  }
669  else
670  {
671  absorbed = theSystem->EraseParticipant( j );
672  theMeanField->Update();
673  }
674 
675  epot = theMeanField->GetTotalPotential();
676 
677  G4double efin = epot + p4ix_new.e() + p4jx_new.e();
678 
679  //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
680 
681 /*
682  G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
683  G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
684  G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
685 */
686 
687 //071031
688  if ( std::abs ( eini - efin ) < fepse )
689  {
690  // Collison OK
691  //std::cout << "collisions6" << std::endl;
692  //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
693  //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
694  //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
695  //std::cout << "collisions before " << ri0/fermi << " " << rj0/fermi << std::endl;
696  //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
697  energyOK = true;
698  break;
699  }
700  else
701  {
702  //G4cout << "Energy Not OK " << G4endl;
703  if ( abs )
704  {
705  //G4cout << "TKDB reinsert j " << G4endl;
706  theSystem->InsertParticipant( absorbed , j );
707  theMeanField->Update();
708  }
709  // do not need reinsert in no absroption case
710  }
711 //071031
712  }
713 
714 // Energetically forbidden collision
715 
716  if ( energyOK )
717  {
718  // Pauli Check
719  //G4cout << "Pauli Checking " << theSystem->GetTotalNumberOfParticipant() << G4endl;
720  if ( !abs )
721  {
722  if ( !( theMeanField->IsPauliBlocked ( i ) == true || theMeanField->IsPauliBlocked ( j ) == true ) )
723  {
724  //G4cout << "Binary Collision Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
725  pauliOK = true;
726  }
727  }
728  else
729  {
730  //if ( theMeanField->IsPauliBlocked ( i ) == false )
731  //090126 i-1 cause jth is erased
732  if ( theMeanField->IsPauliBlocked ( i-1 ) == false )
733  {
734  //G4cout << "Absorption Happen " << theSystem->GetTotalNumberOfParticipant() << G4endl;
735  delete absorbed;
736  pauliOK = true;
737  }
738  }
739 
740 
741  if ( pauliOK )
742  {
743  result = true;
744  }
745  else
746  {
747  //G4cout << "Pauli Blocked" << G4endl;
748  if ( abs )
749  {
750  //G4cout << "TKDB reinsert j pauli block" << G4endl;
751  theSystem->InsertParticipant( absorbed , j );
752  theMeanField->Update();
753  }
754  }
755  }
756 
757  return result;
758 
759 }
760 
761 
762 
764 {
765 
766  //G4cout << "CalFinalStateOfTheBinaryCollisionJQMD" << G4endl;
767 
768  G4bool result = true;
769 
770  G4LorentzVector p4i = theSystem->GetParticipant( i )->Get4Momentum();
771  G4double rmi = theSystem->GetParticipant( i )->GetMass();
772  G4int zi = theSystem->GetParticipant( i )->GetChargeInUnitOfEplus();
773 
774  G4LorentzVector p4j = theSystem->GetParticipant( j )->Get4Momentum();
775  G4double rmj = theSystem->GetParticipant( j )->GetMass();
776  G4int zj = theSystem->GetParticipant( j )->GetChargeInUnitOfEplus();
777 
778  G4double pr = prcm;
779 
780  G4double c2 = pcm.z()/pr;
781 
782  G4double csrt = srt - cutoff;
783 
784  //G4double pri = prcm;
785  //G4double prf = sqrt ( 0.25 * srt*srt -rm2 );
786 
787  G4double asrt = srt - rmi - rmj;
788  G4double pra = prcm;
789 
790 
791 
792  G4double elastic = 0.0;
793 
794  if ( zi == zj )
795  {
796  if ( csrt < 0.4286 )
797  {
798  elastic = 35.0 / ( 1. + csrt * 100.0 ) + 20.0;
799  }
800  else
801  {
802  elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
803  * 2. / pi + 1.0 ) * 9.65 + 7.0;
804  }
805  }
806  else
807  {
808  if ( csrt < 0.4286 )
809  {
810  elastic = 28.0 / ( 1. + csrt * 100.0 ) + 27.0;
811  }
812  else
813  {
814  elastic = ( - std::atan( ( csrt - 0.4286 ) * 1.5 - 0.8 )
815  * 2. / pi + 1.0 ) * 12.34 + 10.0;
816  }
817  }
818 
819 // std::cout << "Collision csrt " << i << " " << j << " " << csrt << std::endl;
820 // std::cout << "Collision elstic " << i << " " << j << " " << elastic << std::endl;
821 
822 
823 // std::cout << "Collision sig " << i << " " << j << " " << sig << std::endl;
824  if ( G4UniformRand() > elastic / sig )
825  {
826  //std::cout << "Inelastic " << std::endl;
827  //std::cout << "elastic/sig " << elastic/sig << std::endl;
828  return result;
829  }
830  else
831  {
832  //std::cout << "Elastic " << std::endl;
833  }
834 // std::cout << "Collision ELSTIC " << i << " " << j << std::endl;
835 
836 
837  G4double as = std::pow ( 3.65 * asrt , 6 );
838  G4double a = 6.0 * as / (1.0 + as);
839  G4double ta = -2.0 * pra*pra;
840  G4double x = G4UniformRand();
841  G4double t1 = std::log( (1-x) * std::exp(2.*a*ta) + x ) / a;
842  G4double c1 = 1.0 - t1/ta;
843 
844  if( std::abs(c1) > 1.0 ) c1 = 2.0 * x - 1.0;
845 
846 /*
847  G4cout << "Collision as " << i << " " << j << " " << as << G4endl;
848  G4cout << "Collision a " << i << " " << j << " " << a << G4endl;
849  G4cout << "Collision ta " << i << " " << j << " " << ta << G4endl;
850  G4cout << "Collision x " << i << " " << j << " " << x << G4endl;
851  G4cout << "Collision t1 " << i << " " << j << " " << t1 << G4endl;
852  G4cout << "Collision c1 " << i << " " << j << " " << c1 << G4endl;
853 */
854  t1 = 2.0*pi*G4UniformRand();
855 // std::cout << "Collision t1 " << i << " " << j << " " << t1 << std::endl;
856  G4double t2 = 0.0;
857  if ( pcm.x() == 0.0 && pcm.y() == 0 )
858  {
859  t2 = 0.0;
860  }
861  else
862  {
863  t2 = std::atan2( pcm.y() , pcm.x() );
864  }
865 // std::cout << "Collision t2 " << i << " " << j << " " << t2 << std::endl;
866 
867  G4double s1 = std::sqrt ( 1.0 - c1*c1 );
868  G4double s2 = std::sqrt ( 1.0 - c2*c2 );
869 
870  G4double ct1 = std::cos(t1);
871  G4double st1 = std::sin(t1);
872 
873  G4double ct2 = std::cos(t2);
874  G4double st2 = std::sin(t2);
875 
876  G4double ss = c2*s1*ct1 + s2*c1;
877 
878  pcm.setX( pr * ( ss*ct2 - s1*st1*st2) );
879  pcm.setY( pr * ( ss*st2 + s1*st1*ct2) );
880  pcm.setZ( pr * ( c1*c2 - s1*s2*ct1) );
881 
882 // std::cout << "Collision pcm " << i << " " << j << " " << pcm << std::endl;
883 
884  G4double epot = theMeanField->GetTotalPotential();
885 
886  G4double eini = epot + p4i.e() + p4j.e();
887  G4double etwo = p4i.e() + p4j.e();
888 
889 /*
890  G4cout << "Collision epot " << i << " " << j << " " << epot << G4endl;
891  G4cout << "Collision eini " << i << " " << j << " " << eini << G4endl;
892  G4cout << "Collision etwo " << i << " " << j << " " << etwo << G4endl;
893 */
894 
895 
896  for ( G4int itry = 0 ; itry < 4 ; itry++ )
897  {
898 
899  G4double eicm = std::sqrt ( rmi*rmi + pcm*pcm );
900  G4double pibeta = pcm*beta;
901 
902  G4double trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + eicm );
903 
904  G4ThreeVector pi_new = beta*trans + pcm;
905 
906  G4double ejcm = std::sqrt ( rmj*rmj + pcm*pcm );
907  trans = gamma * ( gamma * pibeta / ( gamma + 1 ) + ejcm );
908 
909  G4ThreeVector pj_new = beta*trans - pcm;
910 
911 //
912 // Delete old
913 // Add new Particitipants
914 //
915 // Now only change momentum ( Beacuse we only have elastic sctter of nucleon
916 // In future Definition also will be change
917 //
918 
919  theSystem->GetParticipant( i )->SetMomentum( pi_new );
920  theSystem->GetParticipant( j )->SetMomentum( pj_new );
921 
922  G4double pi_new_e = (theSystem->GetParticipant( i )->Get4Momentum()).e();
923  G4double pj_new_e = (theSystem->GetParticipant( j )->Get4Momentum()).e();
924 
925  theMeanField->Cal2BodyQuantities( i );
926  theMeanField->Cal2BodyQuantities( j );
927 
928  epot = theMeanField->GetTotalPotential();
929 
930  G4double efin = epot + pi_new_e + pj_new_e ;
931 
932  //std::cout << "Collision NEW epot " << i << " " << j << " " << epot << " " << std::abs ( eini - efin ) - fepse << std::endl;
933 /*
934  G4cout << "Collision efin " << i << " " << j << " " << efin << G4endl;
935  G4cout << "Collision " << i << " " << j << " " << std::abs ( eini - efin ) << " " << fepse << G4endl;
936  G4cout << "Collision " << std::abs ( eini - efin ) << " " << fepse << G4endl;
937 */
938 
939 //071031
940  if ( std::abs ( eini - efin ) < fepse )
941  {
942  // Collison OK
943  //std::cout << "collisions6" << std::endl;
944  //std::cout << "collisions before " << p4i << " " << p4j << std::endl;
945  //std::cout << "collisions after " << theSystem->GetParticipant( i )->Get4Momentum() << " " << theSystem->GetParticipant( j )->Get4Momentum() << std::endl;
946  //std::cout << "collisions dif " << ( p4i + p4j ) - ( theSystem->GetParticipant( i )->Get4Momentum() + theSystem->GetParticipant( j )->Get4Momentum() ) << std::endl;
947  //std::cout << "collisions before " << rix/fermi << " " << rjx/fermi << std::endl;
948  //std::cout << "collisions after " << theSystem->GetParticipant( i )->GetPosition() << " " << theSystem->GetParticipant( j )->GetPosition() << std::endl;
949  }
950 //071031
951 
952  if ( std::abs ( eini - efin ) < fepse ) return result; // Collison OK
953 
954  G4double cona = ( eini - efin + etwo ) / gamma;
955  G4double fac2 = 1.0 / ( 4.0 * cona*cona * pr*pr ) *
956  ( ( cona*cona - ( rmi*rmi + rmj*rmj ) )*( cona*cona - ( rmi*rmi + rmj*rmj ) )
957  - 4.0 * rmi*rmi * rmj*rmj );
958 
959  if ( fac2 > 0 )
960  {
961  G4double fact = std::sqrt ( fac2 );
962  pcm = fact*pcm;
963  }
964 
965 
966  }
967 
968 // Energetically forbidden collision
969  result = false;
970 
971  return result;
972 
973 }
G4ThreeVector GetPosition()
void SetParticipant(G4QMDParticipant *particle)
Definition: G4QMDSystem.hh:51
double x() const
G4KineticTrackVector * Decay()
void SetPosition(G4ThreeVector r)
const char * p
Definition: xmltok.h:285
G4int GetChargeInUnitOfEplus()
Hep3Vector v() const
G4ParticleDefinition * GetDefinition()
virtual G4KineticTrackVector * Scatter(const G4KineticTrack &trk1, const G4KineticTrack &trk2)
Definition: G4Scatterer.cc:269
G4QMDParticipant * EraseParticipant(G4int i)
Definition: G4QMDSystem.hh:56
int G4int
Definition: G4Types.hh:78
void setY(double)
void Cal2BodyQuantities()
G4bool IsPauliBlocked(G4int)
double z() const
void setZ(double)
void setX(double)
G4ThreeVector GetMomentum()
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
HepLorentzVector & boost(double, double, double)
void CalKinematicsOfBinaryCollisions(G4double)
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
const G4int n
void SetMomentum(G4ThreeVector p)
G4double GetTotalPotential()
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
Hep3Vector findBoostToCM() const
G4double GetPDGMass() const
void DeleteParticipant(G4int i)
Definition: G4QMDSystem.hh:57
G4LorentzVector Get4Momentum()
G4double GetRR2(G4int i, G4int j)
G4bool CalFinalStateOfTheBinaryCollisionJQMD(G4double, G4double, G4ThreeVector, G4double, G4double, G4ThreeVector, G4double, G4int, G4int)
tuple t1
Definition: plottest35.py:33
double y() const
G4bool CalFinalStateOfTheBinaryCollision(G4int, G4int)
#define G4endl
Definition: G4ios.hh:61
void SetDefinition(G4ParticleDefinition *pd)
double G4double
Definition: G4Types.hh:76
void InsertParticipant(G4QMDParticipant *particle, G4int j)
Definition: G4QMDSystem.cc:107
double mag() const
void IncrementCollisionCounter()
Definition: G4QMDSystem.hh:64
tuple c1
Definition: plottest35.py:14
G4double elastic(Particle const *const p1, Particle const *const p2)