74 if (crossSectionCalculator)
delete crossSectionCalculator;
84 if(gIsInitialised)
return;
86 gIsInitialised =
true;
98 G4double polzz = theBeamPolarization.
z()*theTargetPolarization.
z();
99 G4double poltt = theBeamPolarization.
x()*theTargetPolarization.
x()
100 + theBeamPolarization.
y()*theTargetPolarization.
y();
101 if (polzz!=0 || poltt!=0) {
104 xs*=(1.+polzz*lasym+poltt*tasym);
135 if ( (valueA < -1) || (1 < valueA)) {
136 G4cout<<
" ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
137 G4cout<<
" something wrong in total cross section calculation (valueA)\n";
138 G4cout<<
"*********** LONG "<<valueX<<
"\t"<<valueA<<
"\t"<<valueT<<
" energy = "<<gam<<
G4endl;
140 if ( (valueT < -1) || (1 < valueT)) {
141 G4cout<<
" ERROR PolarizedAnnihilationPS::ComputeAsymmetries \n";
142 G4cout<<
" something wrong in total cross section calculation (valueT)\n";
143 G4cout<<
"****** TRAN "<<valueX<<
"\t"<<valueA<<
"\t"<<valueT<<
" energy = "<<gam<<
G4endl;
168 G4double sinTeta = std::sqrt((1.0 - cosTeta)*(1.0 + cosTeta));
170 G4ThreeVector dir(sinTeta*std::cos(phi), sinTeta*std::sin(phi), cosTeta);
189 if (targetIsPolarized)
195 G4double polarization = theBeamPolarization.
p3()*theTargetPolarization.
p3();
198 G4double gama = gamam1+1. , gamap1 = gamam1+2.;
199 G4double sqgrate = std::sqrt(gamam1/gamap1)/2. , sqg2m1 = std::sqrt(gamam1*gamap1);
202 G4double epsilmin = 0.5 - sqgrate , epsilmax = 0.5 + sqgrate;
203 G4double epsilqot = epsilmax/epsilmin;
211 G4double gmax=1. + std::fabs(polarization);
215 crossSectionCalculator->
Initialize(epsilmin, gama, 0., theBeamPolarization, theTargetPolarization);
217 G4cout<<
"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
218 <<
"epsilmin DiceRoutine not appropriate ! "<<crossSectionCalculator->
DiceEpsilon()<<
G4endl;
222 crossSectionCalculator->
Initialize(epsilmax, gama, 0., theBeamPolarization, theTargetPolarization);
224 G4cout<<
"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
225 <<
"epsilmax DiceRoutine not appropriate ! "<<crossSectionCalculator->
DiceEpsilon()<<
G4endl;
238 crossSectionCalculator->
Initialize(epsil, gama, 0., theBeamPolarization, theTargetPolarization,1);
243 if (treject>gmax || treject<0.)
244 G4cout<<
"ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
245 <<
" eps ("<<epsil<<
") rejection does not work properly: "<<treject<<
G4endl;
247 if (treject>trejectmax) trejectmax=treject;
249 G4cout<<
"WARNING in PolarizedAnnihilationPS::PostStepDoIt\n"
250 <<
"eps dicing very inefficient ="<<trejectmax/gmax
251 <<
", "<<treject/gmax<<
". For secondary energy = "<<epsil<<
" "<<ncount<<
G4endl;
261 G4double cost = (epsil*gamap1-1.)/(epsil*sqg2m1);
262 G4double sint = std::sqrt((1.+cost)*(1.-cost));
264 G4double beamTrans = std::sqrt(
sqr(theBeamPolarization.
p1()) +
sqr(theBeamPolarization.
p2()));
265 G4double targetTrans = std::sqrt(
sqr(theTargetPolarization.
p1()) +
sqr(theTargetPolarization.
p2()));
270 crossSectionCalculator->
Initialize(epsil, gama, 0., theBeamPolarization, theTargetPolarization,2);
273 gdiced += crossSectionCalculator->
getVar(3)*theBeamPolarization.
p3()*theTargetPolarization.
p3();
274 gdiced += 1.*(std::fabs(crossSectionCalculator->
getVar(1))
275 + std::fabs(crossSectionCalculator->
getVar(2)))*beamTrans*targetTrans;
276 gdiced += 1.*std::fabs(crossSectionCalculator->
getVar(4))
277 *(std::fabs(theBeamPolarization.
p3())*targetTrans + std::fabs(theTargetPolarization.
p3())*beamTrans);
280 gdist += crossSectionCalculator->
getVar(3)*theBeamPolarization.
p3()*theTargetPolarization.
p3();
281 gdist += crossSectionCalculator->
getVar(1)*(std::cos(phi)*theBeamPolarization.
p1()
282 + std::sin(phi)*theBeamPolarization.
p2())
283 *(std::cos(phi)*theTargetPolarization.
p1()
284 + std::sin(phi)*theTargetPolarization.
p2());
285 gdist += crossSectionCalculator->
getVar(2)*(std::cos(phi)*theBeamPolarization.
p2()
286 - std::sin(phi)*theBeamPolarization.
p1())
287 *(std::cos(phi)*theTargetPolarization.
p2()
288 - std::sin(phi)*theTargetPolarization.
p1());
289 gdist += crossSectionCalculator->
getVar(4)
290 *(std::cos(phi)*theBeamPolarization.
p3()*theTargetPolarization.
p1()
291 + std::cos(phi)*theBeamPolarization.
p1()*theTargetPolarization.
p3()
292 + std::sin(phi)*theBeamPolarization.
p3()*theTargetPolarization.
p2()
293 + std::sin(phi)*theBeamPolarization.
p2()*theTargetPolarization.
p3());
295 treject = gdist/gdiced;
297 if (treject>1.+1.e-10 || treject<0){
298 G4cout<<
"!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
299 <<
" phi rejection does not work properly: "<<treject<<
G4endl;
306 G4cout<<
"!!!ERROR in PolarizedAnnihilationPS::PostStepDoIt\n"
307 <<
" phi rejection does not work properly: "<<treject<<
"\n";
308 G4cout<<
" gdiced="<<gdiced<<
" gdist="<<gdist<<
"\n";
315 G4double dirx = sint*std::cos(phi) , diry = sint*std::sin(phi) , dirz = cost;
321 G4double Phot1Energy = epsil*TotalAvailableEnergy;
322 G4double Phot2Energy =(1.-epsil)*TotalAvailableEnergy;
332 theBeamPolarization.
InvRotateAz(nInteractionFrame,PositDirection);
333 theTargetPolarization.
InvRotateAz(nInteractionFrame,PositDirection);
337 crossSectionCalculator->
Initialize(epsil,gama,phi,theBeamPolarization,theTargetPolarization,2);
341 Phot1Direction.
rotateUz(PositDirection);
344 Phot1Direction, Phot1Energy);
345 finalGamma1Polarization=crossSectionCalculator->
GetPol2();
348 G4cout<<
"ERROR: PolarizedAnnihilation Polarization Vector at epsil = "
349 <<epsil<<
" is too large!!! \n"
350 <<
"annihi pol1= "<<finalGamma1Polarization<<
", ("<<n1<<
")\n";
351 finalGamma1Polarization*=1./std::sqrt(n1);
356 finalGamma1Polarization.
RotateAz(nInteractionFrame,Phot1Direction);
358 finalGamma1Polarization.
p2(),
359 finalGamma1Polarization.
p3());
361 fvect->push_back(aParticle1);
366 G4double Eratio= Phot1Energy/Phot2Energy;
367 G4double PositP= std::sqrt(PositKinEnergy*(PositKinEnergy+2.*electron_mass_c2));
369 (PositP-dirz*Phot1Energy)/Phot2Energy);
370 Phot2Direction.
rotateUz(PositDirection);
373 Phot2Direction, Phot2Energy);
376 finalGamma2Polarization=crossSectionCalculator->
GetPol3();
379 G4cout<<
"ERROR: PolarizedAnnihilation Polarization Vector at epsil = "<<epsil<<
" is too large!!! \n";
380 G4cout<<
"annihi pol2= "<<finalGamma2Polarization<<
", ("<<n2<<
")\n";
382 finalGamma2Polarization*=1./std::sqrt(n2);
385 finalGamma2Polarization.
RotateAz(nInteractionFrame,Phot2Direction);
387 finalGamma2Polarization.
p2(),
388 finalGamma2Polarization.
p3());
390 fvect->push_back(aParticle2);
const G4ThreeVector & GetPolarization() const
G4double GetKineticEnergy() const
virtual ~G4PolarizedAnnihilationModel()
static G4PolarizationManager * GetInstance()
virtual G4double TotalXSection(G4double xmin, G4double xmax, G4double y, const G4StokesVector &pol0, const G4StokesVector &pol1)
static const G4StokesVector P3
G4GLOB_DLL std::ostream G4cout
static const G4StokesVector P2
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kinEnergy, G4double cutEnergy=0., G4double maxEnergy=DBL_MAX)
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kinEnergy, G4double cut, G4double emax)
const G4ThreeVector & GetMomentumDirection() const
Hep3Vector & rotateUz(const Hep3Vector &)
static const G4StokesVector P1
G4PolarizedAnnihilationModel(const G4ParticleDefinition *p=0, const G4String &nam="Polarized-Annihilation")
static G4ThreeVector GetFrame(const G4ThreeVector &, const G4ThreeVector &)
void SetPolarization(G4double polX, G4double polY, G4double polZ)
virtual void Initialize(G4double eps, G4double gamma, G4double phi, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0)
void ComputeAsymmetriesPerElectron(G4double gammaEnergy, G4double &valueX, G4double &valueA, G4double &valueT)
void InvRotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
G4LogicalVolume * GetLogicalVolume() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
bool IsPolarized(G4LogicalVolume *lVol) const
G4VPhysicalVolume * GetVolume() const
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
const G4Track * GetCurrentTrack() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeTrackStatus(G4TrackStatus status)
static const G4StokesVector ZERO
const G4ThreeVector & GetVolumePolarization(G4LogicalVolume *lVol) const
void RotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
G4ParticleChangeForGamma * GetParticleChangeForGamma()