Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4NonEquilibriumEvaporator.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4NonEquilibriumEvaporator.cc 71942 2013-06-28 19:08:11Z mkelsey $
27 //
28 // 20100114 M. Kelsey -- Remove G4CascadeMomentum, use G4LorentzVector directly
29 // 20100309 M. Kelsey -- Use new generateWithRandomAngles for theta,phi stuff;
30 // eliminate some unnecessary std::pow()
31 // 20100412 M. Kelsey -- Pass G4CollisionOutput by ref to ::collide()
32 // 20100413 M. Kelsey -- Pass buffers to paraMaker[Truncated]
33 // 20100517 M. Kelsey -- Inherit from common base class
34 // 20100617 M. Kelsey -- Remove "RUN" preprocessor flag and all "#else" code
35 // 20100622 M. Kelsey -- Use local "bindingEnergy()" function to call through.
36 // 20100701 M. Kelsey -- Don't need to add excitation to nuclear mass; compute
37 // new excitation energies properly (mass differences)
38 // 20100713 M. Kelsey -- Add conservation checking, diagnostic messages.
39 // 20100714 M. Kelsey -- Move conservation checking to base class
40 // 20100719 M. Kelsey -- Simplify EEXS calculations with particle evaporation.
41 // 20100724 M. Kelsey -- Replace std::vector<> D with trivial D[3] array.
42 // 20100914 M. Kelsey -- Migrate to integer A and Z: this involves replacing
43 // a number of G4double terms with G4int, with consequent casts.
44 // 20110214 M. Kelsey -- Follow G4InuclParticle::Model enumerator migration
45 // 20110922 M. Kelsey -- Follow G4InuclParticle::print(ostream&) migration
46 // 20120608 M. Kelsey -- Fix variable-name "shadowing" compiler warnings.
47 // 20121009 M. Kelsey -- Add some high-verbosity debugging output
48 // 20130622 Inherit from G4CascadeDeexciteBase, move to deExcite() interface
49 // with G4Fragment
50 // 20130808 M. Kelsey -- Use new object-version of paraMaker, for thread safety
51 // 20130924 M. Kelsey -- Replace std::pow with G4Pow::powN() for CPU speed
52 
53 #include <cmath>
54 
56 #include "G4SystemOfUnits.hh"
57 #include "G4CollisionOutput.hh"
58 #include "G4Fragment.hh"
60 #include "G4InuclNuclei.hh"
62 #include "G4LorentzConvertor.hh"
63 #include "G4Pow.hh"
64 
65 using namespace G4InuclSpecialFunctions;
66 
67 
69  : G4CascadeDeexciteBase("G4NonEquilibriumEvaporator"),
70  theParaMaker(verboseLevel), theG4Pow(G4Pow::GetInstance()) {}
71 
72 
74  G4CollisionOutput& output) {
75  if (verboseLevel) {
76  G4cout << " >>> G4NonEquilibriumEvaporator::deExcite" << G4endl;
77  }
78 
79  if (verboseLevel>1) G4cout << " evaporating target:\n" << target << G4endl;
80 
81  const G4int a_cut = 5;
82  const G4int z_cut = 3;
83 
84  const G4double eexs_cut = 0.1;
85 
86  const G4double coul_coeff = 1.4;
87  const G4int itry_max = 1000;
88  const G4double small_ekin = 1.0e-6;
89  const G4double width_cut = 0.005;
90 
91  getTargetData(target);
92  G4LorentzVector pin = PEX; // Save original four-vector for later
93 
95  G4int QPP = config.protonQuasiParticles;
96  G4int QNP = config.neutronQuasiParticles;
97  G4int QPH = config.protonHoles;
98  G4int QNH = config.neutronHoles;
99 
100  G4int QP = QPP + QNP;
101  G4int QH = QPH + QNH;
102  G4int QEX = QP + QH;
103 
104  G4InuclElementaryParticle dummy(small_ekin, 1);
105  G4LorentzConvertor toTheExitonSystemRestFrame;
106  //*** toTheExitonSystemRestFrame.setVerbose(verboseLevel);
107  toTheExitonSystemRestFrame.setBullet(dummy);
108 
109  G4double EFN = FermiEnergy(A, Z, 0);
110  G4double EFP = FermiEnergy(A, Z, 1);
111 
112  G4int AR = A - QP;
113  G4int ZR = Z - QPP;
114  G4int NEX = QEX;
115  G4LorentzVector ppout;
116  G4bool try_again = (NEX > 0);
117 
118  // Buffer for parameter sets
119  std::pair<G4double, G4double> parms;
120 
121  while (try_again) {
122  if (A >= a_cut && Z >= z_cut && EEXS > eexs_cut) { // ok
123  // update exiton system (include excitation energy!)
125  PEX.setVectM(PEX.vect(), nuc_mass);
126  toTheExitonSystemRestFrame.setTarget(PEX);
127  toTheExitonSystemRestFrame.toTheTargetRestFrame();
128 
129  if (verboseLevel > 2) {
130  G4cout << " A " << A << " Z " << Z << " mass " << nuc_mass
131  << " EEXS " << EEXS << G4endl;
132  }
133 
134  G4double MEL = getMatrixElement(A);
135  G4double E0 = getE0(A);
136  G4double PL = getParLev(A, Z);
137  G4double parlev = PL / A;
138  G4double EG = PL * EEXS;
139 
140  if (QEX < std::sqrt(2.0 * EG)) { // ok
141  if (verboseLevel > 3)
142  G4cout << " QEX " << QEX << " < sqrt(2*EG) " << std::sqrt(2.*EG)
143  << " NEX " << NEX << G4endl;
144 
145  theParaMaker.getTruncated(Z, parms);
146  const G4double& AK1 = parms.first;
147  const G4double& CPA1 = parms.second;
148 
149  G4double VP = coul_coeff * Z * AK1 / (G4cbrt(A-1) + 1.0) /
150  (1.0 + EEXS / E0);
151  G4double DM1 = bindingEnergy(A,Z);
152  G4double BN = DM1 - bindingEnergy(A-1,Z);
153  G4double BP = DM1 - bindingEnergy(A-1,Z-1);
154  G4double EMN = EEXS - BN;
155  G4double EMP = EEXS - BP - VP * A / (A-1);
156  G4double ESP = 0.0;
157 
158  if (verboseLevel > 3) {
159  G4cout << " AK1 " << AK1 << " CPA1 " << " VP " << VP
160  << "\n bind(A,Z) " << DM1 << " dBind(N) " << BN
161  << " dBind(P) " << BP
162  << "\n EMN " << EMN << " EMP " << EMP << G4endl;
163  }
164 
165  if (EMN > eexs_cut) { // ok
166  G4int icase = 0;
167 
168  if (NEX > 1) {
169  G4double APH = 0.25 * (QP * QP + QH * QH + QP - 3 * QH);
170  G4double APH1 = APH + 0.5 * (QP + QH);
171  ESP = EEXS / QEX;
172  G4double MELE = MEL / ESP / (A*A*A);
173 
174  if (verboseLevel > 3)
175  G4cout << " APH " << APH << " APH1 " << APH1 << " ESP " << ESP
176  << G4endl;
177 
178  if (ESP > 15.0) {
179  MELE *= std::sqrt(15.0 / ESP);
180  } else if(ESP < 7.0) {
181  MELE *= std::sqrt(ESP / 7.0);
182  if (ESP < 2.0) MELE *= std::sqrt(ESP / 2.0);
183  };
184 
185  G4double F1 = EG - APH;
186  G4double F2 = EG - APH1;
187 
188  if (verboseLevel > 3)
189  G4cout << " MELE " << MELE << " F1 " << F1 << " F2 " << F2
190  << G4endl;
191 
192  if (F1 > 0.0 && F2 > 0.0) {
193  G4double F = F2 / F1;
194  G4double M1 = 2.77 * MELE * PL;
195  G4double D[3] = { 0., 0., 0. };
196  D[0] = M1 * F2 * F2 * theG4Pow->powN(F, NEX-1) / (QEX+1);
197  if (verboseLevel > 3) {
198  G4cout << " D[0] " << D[0] << " with F " << F
199  << " powN(F,NEX-1) " << theG4Pow->powN(F, NEX-1)
200  << G4endl;
201  }
202 
203  if (D[0] > 0.0) {
204 
205  if (NEX >= 2) {
206  D[1] = 0.0462 / parlev / G4cbrt(A) * QP * EEXS / QEX;
207 
208  if (EMP > eexs_cut)
209  D[2] = D[1] * theG4Pow->powN(EMP/EEXS, NEX) * (1.0 + CPA1);
210  D[1] *= theG4Pow->powN(EMN/EEXS, NEX) * getAL(A);
211 
212  if (verboseLevel > 3) {
213  G4cout << " D[1] " << D[1] << " with powN(EMN/EEXS, NEX) "
214  << theG4Pow->powN(EMN/EEXS, NEX) << G4endl
215  << " D[2] " << D[2] << " with powN(EMP/EEXS, NEX) "
216  << theG4Pow->powN(EMP/EEXS, NEX) << G4endl;
217  }
218 
219  if (QNP < 1) D[1] = 0.0;
220  if (QPP < 1) D[2] = 0.0;
221 
222  try_again = NEX > 1 && (D[1] > width_cut * D[0] ||
223  D[2] > width_cut * D[0]);
224 
225  if (try_again) {
226  G4double D5 = D[0] + D[1] + D[2];
227  G4double SL = D5 * inuclRndm();
228  G4double S1 = 0.;
229 
230  if (verboseLevel > 3)
231  G4cout << " D5 " << D5 << " SL " << SL << G4endl;
232 
233  for (G4int i = 0; i < 3; i++) {
234  S1 += D[i];
235  if (SL <= S1) {
236  icase = i;
237  break;
238  }
239  }
240 
241  if (verboseLevel > 3)
242  G4cout << " got icase " << icase << G4endl;
243  } // if (try_again)
244  } // if (NEX >= 2)
245  } else try_again = false; // if (D[0] > 0)
246  } else try_again = false; // if (F1>0 && F2>0)
247  } // if (NEX > 1)
248 
249  if (try_again) {
250  if (icase > 0) { // N -> N-1 with particle escape
251  if (verboseLevel > 3)
252  G4cout << " try_again icase " << icase << G4endl;
253 
254  G4double V = 0.0;
255  G4int ptype = 0;
256  G4double B = 0.0;
257 
258  if (A < 3.0) try_again = false;
259 
260  if (try_again) {
261 
262  if (icase == 1) { // neutron escape
263  if (verboseLevel > 3)
264  G4cout << " trying neutron escape" << G4endl;
265 
266  if (QNP < 1) icase = 0;
267  else {
268  B = BN;
269  V = 0.0;
270  ptype = 2;
271  };
272  } else { // proton esape
273  if (verboseLevel > 3)
274  G4cout << " trying proton escape" << G4endl;
275 
276  if (QPP < 1) icase = 0;
277  else {
278  B = BP;
279  V = VP;
280  ptype = 1;
281 
282  if (Z-1 < 1) try_again = false;
283  };
284  };
285 
286  if (try_again && icase != 0) {
287  if (verboseLevel > 3)
288  G4cout << " ptype " << ptype << " B " << B << " V " << V
289  << G4endl;
290 
291  G4double EB = EEXS - B;
292  G4double E = EB - V * A / (A-1);
293 
294  if (E < 0.0) icase = 0;
295  else {
296  G4double E1 = EB - V;
297  G4double EEXS_new = -1.;
298  G4double EPART = 0.0;
299  G4int itry1 = 0;
300  G4bool bad = true;
301 
302  while (itry1 < itry_max && icase > 0 && bad) {
303  itry1++;
304  G4int itry = 0;
305 
306  while (EEXS_new < 0.0 && itry < itry_max) {
307  itry++;
308  G4double R = inuclRndm();
309  G4double X;
310 
311  if (NEX == 2) {
312  X = 1.0 - std::sqrt(R);
313 
314  } else {
315  G4double QEX2 = 1.0 / QEX;
316  G4double QEX1 = 1.0 / (QEX-1);
317  X = theG4Pow->powA(0.5*R, QEX2);
318  if (verboseLevel > 3) {
319  G4cout << " R " << R << " QEX2 " << QEX2
320  << " powA(R, QEX2) " << X << G4endl;
321  }
322 
323  for (G4int i = 0; i < 1000; i++) {
324  G4double DX = X * QEX1 *
325  (1.0 + QEX2 * X * (1.0 - R / theG4Pow->powN(X, NEX)) / (1.0 - X));
326  if (verboseLevel > 3) {
327  G4cout << " NEX " << NEX << " powN(X, NEX) "
328  << theG4Pow->powN(X, NEX) << G4endl;
329  }
330 
331  X -= DX;
332 
333  if (std::fabs(DX / X) < 0.01) break;
334 
335  };
336  };
337  EPART = EB - X * E1;
338  EEXS_new = EB - EPART * A / (A-1);
339  } // while (EEXS_new < 0.0...
340 
341  if (itry == itry_max || EEXS_new < 0.0) {
342  icase = 0;
343  continue;
344  }
345 
346  if (verboseLevel > 2)
347  G4cout << " particle " << ptype << " escape " << G4endl;
348 
349  EPART /= GeV; // From MeV to GeV
350 
351  G4InuclElementaryParticle particle(ptype);
353 
354  // generate particle momentum
355  G4double mass = particle.getMass();
356  G4double pmod = std::sqrt(EPART * (2.0 * mass + EPART));
357  G4LorentzVector mom = generateWithRandomAngles(pmod,mass);
358 
359  // Push evaporated paricle into current rest frame
360  mom = toTheExitonSystemRestFrame.backToTheLab(mom);
361 
362  // Adjust quasiparticle and nucleon counts
363  G4int QPP_new = QPP;
364  G4int QNP_new = QNP;
365 
366  G4int A_new = A-1;
367  G4int Z_new = Z;
368 
369  if (ptype == 1) {
370  QPP_new--;
371  Z_new--;
372  };
373 
374  if (ptype == 2) QNP_new--;
375 
376  if (verboseLevel > 3) {
377  G4cout << " nucleus px " << PEX.px() << " py " << PEX.py()
378  << " pz " << PEX.pz() << " E " << PEX.e() << G4endl
379  << " evaporate px " << mom.px() << " py " << mom.py()
380  << " pz " << mom.pz() << " E " << mom.e() << G4endl;
381  }
382 
383  // New excitation energy depends on residual nuclear state
384  G4double mass_new = G4InuclNuclei::getNucleiMass(A_new, Z_new);
385 
386  EEXS_new = ((PEX-mom).m() - mass_new)*GeV;
387  if (EEXS_new < 0.) continue; // Sanity check for new nucleus
388 
389  if (verboseLevel > 3)
390  G4cout << " EEXS_new " << EEXS_new << G4endl;
391 
392  PEX -= mom;
393  EEXS = EEXS_new;
394 
395  A = A_new;
396  Z = Z_new;
397 
398  NEX--;
399  QEX--;
400  QP--;
401  QPP = QPP_new;
402  QNP = QNP_new;
403 
404  particle.setMomentum(mom);
405  output.addOutgoingParticle(particle);
406  ppout += mom;
407  if (verboseLevel > 3) {
408  G4cout << particle << G4endl
409  << " ppout px " << ppout.px() << " py " << ppout.py()
410  << " pz " << ppout.pz() << " E " << ppout.e() << G4endl;
411  }
412 
413  bad = false;
414  } // while (itry1<itry_max && icase>0
415 
416  if (itry1 == itry_max) icase = 0;
417  } // if (E < 0.) [else]
418  } // if (try_again && icase != 0)
419  } // if (try_again)
420  } // if (icase > 0)
421 
422  if (icase == 0 && try_again) { // N -> N + 2
423  if (verboseLevel > 3) G4cout << " adding excitons" << G4endl;
424 
425  G4double TNN = 1.6 * EFN + ESP;
426  G4double TNP = 1.6 * EFP + ESP;
427  G4double XNUN = 1.0 / (1.6 + ESP / EFN);
428  G4double XNUP = 1.0 / (1.6 + ESP / EFP);
429  G4double SNN1 = csNN(TNP) * XNUP;
430  G4double SNN2 = csNN(TNN) * XNUN;
431  G4double SPN1 = csPN(TNP) * XNUP;
432  G4double SPN2 = csPN(TNN) * XNUN;
433  G4double PP = (QPP * SNN1 + QNP * SPN1) * ZR;
434  G4double PN = (QPP * SPN2 + QNP * SNN2) * (AR - ZR);
435  G4double PW = PP + PN;
436  NEX += 2;
437  QEX += 2;
438  QP++;
439  QH++;
440  AR--;
441 
442  if (AR > 1) {
443  G4double SL = PW * inuclRndm();
444 
445  if (SL > PP) {
446  QNP++;
447  QNH++;
448  } else {
449  QPP++;
450  QPH++;
451  ZR--;
452  if (ZR < 2) try_again = false;
453  }
454  } else try_again = false;
455  } // if (icase==0 && try_again)
456  } // if (try_again)
457  } else try_again = false; // if (EMN > eexs_cut)
458  } else try_again = false; // if (QEX < sqrg(2*EG)
459  } else try_again = false; // if (A > a_cut ...
460  } // while (try_again)
461 
462  // everything finished, set output fragment
463 
464  if (output.numberOfOutgoingParticles() == 0) {
465  output.addRecoilFragment(target);
466  } else {
467  G4LorentzVector pnuc = pin - ppout;
468  output.addRecoilFragment(makeFragment(pnuc, A, Z, EEXS));
469 
470  if (verboseLevel>3)
471  G4cout << " remaining nucleus\n" << output.getRecoilFragment() << G4endl;
472  }
473 
474  validateOutput(target, output); // Check energy conservation, etc.
475  return;
476 }
477 
478 G4double G4NonEquilibriumEvaporator::getMatrixElement(G4int a) const {
479  if (verboseLevel > 3) {
480  G4cout << " >>> G4NonEquilibriumEvaporator::getMatrixElement" << G4endl;
481  }
482 
483  G4double me;
484 
485  if (a > 150) me = 100.0;
486  else if (a > 20) me = 140.0;
487  else me = 70.0;
488 
489  return me;
490 }
491 
492 G4double G4NonEquilibriumEvaporator::getE0(G4int ) const {
493  if (verboseLevel > 3) {
494  G4cout << " >>> G4NonEquilibriumEvaporator::getEO" << G4endl;
495  }
496 
497  const G4double e0 = 200.0;
498 
499  return e0;
500 }
501 
502 G4double G4NonEquilibriumEvaporator::getParLev(G4int a, G4int ) const {
503  if (verboseLevel > 3) {
504  G4cout << " >>> G4NonEquilibriumEvaporator::getParLev" << G4endl;
505  }
506 
507  // const G4double par = 0.125;
508  G4double pl = 0.125 * a;
509 
510  return pl;
511 }
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:263
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:125
virtual void deExcite(const G4Fragment &target, G4CollisionOutput &output)
Definition: G4Pow.hh:56
void addOutgoingParticle(const G4InuclElementaryParticle &particle)
const XML_Char * target
void setBullet(const G4InuclParticle *bullet)
G4LorentzVector backToTheLab(const G4LorentzVector &mom) const
int G4int
Definition: G4Types.hh:78
void setVectM(const Hep3Vector &spatial, double mass)
void getTruncated(G4double Z, std::pair< G4double, G4double > &parms)
Definition: paraMaker.cc:95
void getTargetData(const G4Fragment &target)
tuple pl
Definition: readPY.py:5
Hep3Vector vect() const
G4GLOB_DLL std::ostream G4cout
double py() const
bool G4bool
Definition: G4Types.hh:79
G4double getNucleiMass() const
struct config_s config
G4int numberOfOutgoingParticles() const
double px() const
G4LorentzVector generateWithRandomAngles(G4double p, G4double mass=0.)
const G4Fragment & makeFragment(G4LorentzVector mom, G4int A, G4int Z, G4double EX=0.)
double pz() const
void setModel(Model model)
#define G4endl
Definition: G4ios.hh:61
virtual G4bool validateOutput(const G4Fragment &target, G4CollisionOutput &output)
void addRecoilFragment(const G4Fragment *aFragment)
std::map< G4String, G4AttDef > * GetInstance(const G4String &storeKey, G4bool &isNew)
const G4Fragment & getRecoilFragment(G4int index=0) const
void setMomentum(const G4LorentzVector &mom)
double G4double
Definition: G4Types.hh:76
G4double bindingEnergy(G4int A, G4int Z)
G4double FermiEnergy(G4int A, G4int Z, G4int ntype)
G4double getMass() const
void setTarget(const G4InuclParticle *target)