Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCLDeltaProductionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
38 #include "G4INCLKinematicsUtils.hh"
40 #include "G4INCLRandom.hh"
41 #include "G4INCLGlobals.hh"
42 #include "G4INCLLogger.hh"
43 
44 namespace G4INCL {
45 
47  Particle *p2)
48  : particle1(p1), particle2(p2)
49  {}
50 
52 
53  G4double DeltaProductionChannel::sampleDeltaMass(G4double ecm) {
54  const G4double ramass = 0.0;
55  const G4int maxTries = 100000;
56  G4int nTries = 0;
57  deltaProd101: G4double rndm = Random::shoot();
58  nTries++;
59  G4double y = std::tan(Math::pi*(rndm-0.5));
60  G4double x = 1232.+0.5*130.*y+ramass;
61  if (x < ParticleTable::effectiveDeltaDecayThreshold && (nTries < maxTries))
62  goto deltaProd101;
63  if (ecm < x + ParticleTable::effectiveNucleonMass + 1.0 && (nTries < maxTries)) goto deltaProd101;
64 
65  // generation of the delta mass with the penetration factor
66  // (see prc56(1997)2431)
67  y=ecm*ecm;
68  G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
69  G4double q3=std::pow(std::sqrt(q2), 3.);
70  G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
71  y=x*x;
72  q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
73  q3=std::pow(std::sqrt(q2), 3.);
74  G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
75  rndm = Random::shoot();
76  if (rndm > f3/f3max && (nTries < maxTries)) goto deltaProd101;
77  if(nTries >= maxTries) {
78  INCL_WARN("DeltaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Delta mass " << x << " MeV with CM energy " << ecm << " MeV may be unphysical." << std::endl);
79  }
80  return x;
81  }
82 
84  /**
85  * Delta production
86  *
87  * The production is not isotropic in this version it has the same
88  * exp(b*t) structure as the nn elastic scattering (formula 2.3 of
89  * j.cugnon et al, nucl phys a352(1981)505) parametrization of b
90  * taken from ref. prc56(1997)2431
91  */
92  // 100 IF (K4.NE.1) GO TO 101 // ThA K4 = 2 by default
93  // ParticleType p1TypeOld = particle1->getType();
94  // ParticleType p2TypeOld = particle2->getType();
95  G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
96 
97  const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
98  ParticleTable::getIsospin(particle2->getType());
99 
100  // Calculate the outcome of the channel:
101  G4double pin = particle1->getMomentum().mag();
102  G4double rndm = 0.0, b = 0.0;
103 
104  G4double xmdel = sampleDeltaMass(ecm);
105  // deltaProduction103: // This label is not used
107  if (pnorm <= 0.0) pnorm=0.000001;
108  G4int index=0;
109  G4int index2=0;
110  rndm = Random::shoot();
111  if (rndm < 0.5) index=1;
112  if (isospin == 0) { // pn case
113  rndm = Random::shoot();
114  if (rndm < 0.5) index2=1;
115  }
116 
117  // G4double x=0.001*0.5*ecm*std::sqrt(ecm*ecm-4.*ParticleTable::effectiveNucleonMass2)
118  // / ParticleTable::effectiveNucleonMass;
120  if(x < 1.4) {
121  b=(5.287/(1.+std::exp((1.3-x)/0.05)))*1.e-6;
122  } else {
123  b=(4.65+0.706*(x-1.4))*1.e-6;
124  }
125  G4double xkh = 2.*b*pin*pnorm;
126  rndm = Random::shoot();
127  G4double ctet=1.0+std::log(1.-rndm*(1.-std::exp(-2.*xkh)))/xkh;
128  if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
129  G4double stet = std::sqrt(1.-ctet*ctet);
130 
131  rndm = Random::shoot();
133  G4double cfi = std::cos(fi);
134  G4double sfi = std::sin(fi);
135  // delta production: correction of the angular distribution 02/09/02
136 
137  G4double xx = particle1->getMomentum().perp2();
138  G4double zz = std::pow(particle1->getMomentum().getZ(), 2);
139  G4double xp1, xp2, xp3;
140  if (xx >= zz*1.e-8) {
141  G4double yn = std::sqrt(xx);
142  G4double zn = yn*pin;
143  G4double ex[3], ey[3], ez[3];
144  G4double p1 = particle1->getMomentum().getX();
145  G4double p2 = particle1->getMomentum().getY();
146  G4double p3 = particle1->getMomentum().getZ();
147  ez[0] = p1/pin;
148  ez[1] = p2/pin;
149  ez[2] = p3/pin;
150  ex[0] = p2/yn;
151  ex[1] = -p1/yn;
152  ex[2] = 0.0;
153  ey[0] = p1*p3/zn;
154  ey[1] = p2*p3/zn;
155  ey[2] = -xx/zn;
156  xp1 = (ex[0]*cfi*stet+ey[0]*sfi*stet+ez[0]*ctet)*pnorm;
157  xp2 = (ex[1]*cfi*stet+ey[1]*sfi*stet+ez[1]*ctet)*pnorm;
158  xp3 = (ex[2]*cfi*stet+ey[2]*sfi*stet+ez[2]*ctet)*pnorm;
159  }else {
160  xp1=pnorm*stet*cfi;
161  xp2=pnorm*stet*sfi;
162  xp3=pnorm*ctet;
163  }
164  // end of correction angular distribution of delta production
165  G4double e3 = std::sqrt(xp1*xp1+xp2*xp2+xp3*xp3
167  // if(k4.ne.0) go to 161
168 
169  // long-lived delta
170  if (index != 1) {
171  ThreeVector mom(xp1, xp2, xp3);
172  particle1->setMomentum(mom);
173  // e1=ecm-eout1
174  } else {
175  ThreeVector mom(-xp1, -xp2, -xp3);
176  particle1->setMomentum(mom);
177  // e1=ecm-eout1
178  }
179 
180  particle1->setEnergy(ecm - e3);
181  particle2->setEnergy(e3);
182  particle2->setMomentum(-particle1->getMomentum());
183 
184  // SYMMETRIZATION OF CHARGES IN pn -> N DELTA
185  // THE TEST ON "INDEX" ABOVE SYMETRIZES THE EXCITATION OF ONE
186  // OF THE NUCLEONS WITH RESPECT TO THE DELTA EXCITATION
187  // (SEE NOTE 16/10/97)
188  G4int is1 = ParticleTable::getIsospin(particle1->getType());
189  G4int is2 = ParticleTable::getIsospin(particle2->getType());
190  if (isospin == 0) {
191  if(index2 == 1) {
192  G4int isi=is1;
193  is1=is2;
194  is2=isi;
195  }
196  particle1->setHelicity(0.0);
197  } else {
198  rndm = Random::shoot();
199  if (rndm >= 0.25) {
200  is1=3*is1;
201  is2=-is2;
202  }
203  particle1->setHelicity(ctet*ctet);
204  }
205 
207  particle1->setType(DeltaMinus);
208  } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
209  particle1->setType(DeltaZero);
210  } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
211  particle1->setType(DeltaPlus);
212  } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
213  particle1->setType(DeltaPlusPlus);
214  }
215 
216  if(is2 == ParticleTable::getIsospin(Proton)) {
217  particle2->setType(Proton);
218  } else if(is2 == ParticleTable::getIsospin(Neutron)) {
219  particle2->setType(Neutron);
220  }
221 
222  if(particle1->isDelta()) particle1->setMass(xmdel);
223  if(particle2->isDelta()) particle2->setMass(xmdel);
224 
225  FinalState *fs = new FinalState;
226  fs->addModifiedParticle(particle1);
227  fs->addModifiedParticle(particle2);
228  return fs;
229  }
230 }
void setMass(G4double mass)
const G4double pi
const G4INCL::ThreeVector & getMomentum() const
G4bool isDelta() const
Is it a Delta?
#define INCL_WARN(x)
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
int G4int
Definition: G4Types.hh:78
void setEnergy(G4double energy)
G4double perp2() const
double precision function rndm(RDUMMY)
Definition: dpm25nulib.f:1460
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass2
G4INCL::ParticleType getType() const
void setType(ParticleType t)
const G4double twoPi
G4double getX() const
G4double shoot()
Definition: G4INCLRandom.cc:74
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
G4double mag() const
double G4double
Definition: G4Types.hh:76
G4ThreadLocal G4double effectiveDeltaDecayThreshold
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int sign(const T t)
const G4double effectiveNucleonMass
void addModifiedParticle(Particle *p)
G4double getZ() const
void setHelicity(G4double h)
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4double getY() const