Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ICRU73QOModel.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ICRU73QOModel.hh 66241 2012-12-13 18:34:42Z gunter $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class header file
31 //
32 //
33 // File name: G4ICRU73QOModel
34 //
35 // Author: Alexander Bagulya
36 //
37 // Creation date: 21.05.2010
38 //
39 // Modifications:
40 //
41 //
42 // Class Description:
43 //
44 // Quantum Harmonic Oscillator Model for energy loss using atomic shell
45 // structure of atoms taking into account Q^2 (main for projectile charge Q),
46 // Q^3 and Q^4 terms for computation of energy loss due to binary collisions.
47 // Can be applied on heavy negatively charged particles for the energy interval
48 // 10 keV - 10 MeV scaled to the proton mass.
49 //
50 // Used data and formula of
51 // 1. G4QAOLowEnergyLoss class, S.Chauvie, P.Nieminen, M.G.Pia. IEEE Trans.
52 // Nucl. Sci. 54 (2007) 578.
53 // 2. ShellStrength and ShellEnergy from ICRU'73 Report 2005,
54 // 3. Data for Ta (Z=73) from P.Sigmund, A.Shinner. Eur. Phys. J. D15 (2001)
55 // 165-172
56 //
57 // -------------------------------------------------------------------
58 //
59 
60 #ifndef G4ICRU73QOModel_h
61 #define G4ICRU73QOModel_h 1
62 
64 
65 #include "G4VEmModel.hh"
66 #include "G4AtomicShells.hh"
67 #include "G4DensityEffectData.hh"
68 
70 
72 {
73 
74 public:
75 
77  const G4String& nam = "ICRU73QO");
78 
79  virtual ~G4ICRU73QOModel();
80 
81  virtual void Initialise(const G4ParticleDefinition*, const G4DataVector&);
82 
84  const G4ParticleDefinition*,
85  G4double kineticEnergy,
86  G4double cutEnergy,
87  G4double maxEnergy);
88 
90  const G4ParticleDefinition*,
91  G4double kineticEnergy,
92  G4double Z, G4double A,
93  G4double cutEnergy,
94  G4double maxEnergy);
95 
97  const G4ParticleDefinition*,
98  G4double kineticEnergy,
99  G4double cutEnergy,
100  G4double maxEnergy);
101 
103  const G4ParticleDefinition*,
104  G4double kineticEnergy,
105  G4double);
106 
107  virtual void SampleSecondaries(std::vector<G4DynamicParticle*>*,
108  const G4MaterialCutsCouple*,
109  const G4DynamicParticle*,
110  G4double tmin,
111  G4double maxEnergy);
112 
113  // add correction to energy loss and compute non-ionizing energy loss
114  virtual void CorrectionsAlongStep(const G4MaterialCutsCouple*,
115  const G4DynamicParticle*,
116  G4double& eloss,
117  G4double& niel,
118  G4double length);
119 
120 protected:
121 
123  G4double kinEnergy);
124 
125 private:
126 
127  inline void SetParticle(const G4ParticleDefinition* p);
128  inline void SetLowestKinEnergy(const G4double val);
129 
130  G4double DEDX(const G4Material* material, G4double kineticEnergy);
131 
132  G4double DEDXPerElement(G4int Z, G4double kineticEnergy);
133 
134  // hide assignment operator
135  G4ICRU73QOModel & operator=(const G4ICRU73QOModel &right);
137 
138  const G4ParticleDefinition* particle;
139  G4ParticleDefinition* theElectron;
140  G4ParticleChangeForLoss* fParticleChange;
141  G4DensityEffectData* denEffData;
142 
143  G4double mass;
144  G4double charge;
145  G4double chargeSquare;
146  G4double massRate;
147  G4double ratio;
148  G4double lowestKinEnergy;
149 
150  G4bool isInitialised;
151 
152  // get number of shell, energy and oscillator strenghts for material
153  G4int GetNumberOfShells(G4int Z) const;
154 
155  G4double GetShellEnergy(G4int Z, G4int nbOfTheShell) const;
156  G4double GetOscillatorEnergy(G4int Z, G4int nbOfTheShell) const;
157  G4double GetShellStrength(G4int Z, G4int nbOfTheShell) const;
158 
159  // calculate stopping number for L's term
160  G4double GetL0(G4double normEnergy) const;
161  // terms in Z^2
162  G4double GetL1(G4double normEnergy) const;
163  // terms in Z^3
164  G4double GetL2(G4double normEnergy) const;
165  // terms in Z^4
166 
167 
168  // Z of element at now avaliable for the model
169  static const G4int NQOELEM = 26;
170  static const G4int NQODATA = 130;
171  static const G4int ZElementAvailable[NQOELEM];
172 
173  // number, energy and oscillator strenghts
174  // for an harmonic oscillator model of material
175  static const G4int startElemIndex[NQOELEM];
176  static const G4int nbofShellsForElement[NQOELEM];
177  static const G4double ShellEnergy[NQODATA];
178  static const G4double SubShellOccupation[NQODATA]; // Z * ShellStrength
179 
180  G4int indexZ[100];
181 
182  // variable for calculation of stopping number of L's term
183  static const G4double L0[67][2];
184  static const G4double L1[22][2];
185  static const G4double L2[14][2];
186 
187  G4int sizeL0;
188  G4int sizeL1;
189  G4int sizeL2;
190 
191  static const G4double factorBethe[99];
192 
193 };
194 
195 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
196 
197 inline void G4ICRU73QOModel::SetParticle(const G4ParticleDefinition* p)
198 {
199  particle = p;
200  mass = particle->GetPDGMass();
201  charge = particle->GetPDGCharge()/CLHEP::eplus;
202  chargeSquare = charge*charge;
203  massRate = mass/CLHEP::proton_mass_c2;
204  ratio = CLHEP::electron_mass_c2/mass;
205 }
206 
207 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
208 
209 inline G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const
210 {
211  G4int nShell = 0;
212 
213  if(indexZ[Z] >= 0) { nShell = nbofShellsForElement[indexZ[Z]];
214  } else { nShell = G4AtomicShells::GetNumberOfShells(Z); }
215 
216  return nShell;
217 }
218 
219 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
220 
221 inline G4double
222 G4ICRU73QOModel::GetShellEnergy(G4int Z, G4int nbOfTheShell) const
223 {
224  G4double shellEnergy = 0.;
225 
226  G4int idx = indexZ[Z];
227 
228  if(idx >= 0) { shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*CLHEP::eV;
229  } else { shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell); }
230 
231  return shellEnergy;
232 }
233 
234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
235 
236 inline G4double
237 G4ICRU73QOModel::GetShellStrength(G4int Z, G4int nbOfTheShell) const
238 {
239  G4double shellStrength = 0.;
240 
241  G4int idx = indexZ[Z];
242 
243  if(idx >= 0) { shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z;
244  } else { shellStrength = G4double(G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell))/Z; }
245 
246  return shellStrength;
247 }
248 
249 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
250 
251 inline void G4ICRU73QOModel::SetLowestKinEnergy(const G4double val)
252 {
253  lowestKinEnergy = val;
254 }
255 
256 #endif
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double)
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
const char * p
Definition: xmltok.h:285
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
int G4int
Definition: G4Types.hh:78
G4ICRU73QOModel(const G4ParticleDefinition *p=0, const G4String &nam="ICRU73QO")
string material
Definition: eplot.py:19
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
bool G4bool
Definition: G4Types.hh:79
virtual ~G4ICRU73QOModel()
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
G4double GetPDGMass() const
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy)
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
virtual void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
static G4int GetNumberOfShells(G4int Z)