Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4FTFParameters.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4FTFParameters.cc 74627 2013-10-17 07:04:38Z gcosmo $
28 // GEANT4 tag $Name: $
29 //
30 
31 #include <utility>
32 
33 #include "G4FTFParameters.hh"
34 
35 #include "G4ios.hh"
36 #include "G4PhysicalConstants.hh"
37 #include "G4SystemOfUnits.hh"
38 
39 #include "G4ParticleDefinition.hh" // 31 May 2011
40 
41 #include "G4Proton.hh" // 31 May 2011
42 #include "G4Neutron.hh" // 31 May 2011
43 
44 #include "G4PionPlus.hh" // 31 May 2011
45 #include "G4PionMinus.hh" // 31 May 2011
46 #include "G4KaonPlus.hh" // 31 May 2011
47 #include "G4KaonMinus.hh" // 31 May 2011
48 
49 
50 //============================================================================
51 
52 //#define debugFTFparams
53 
54 
55 //============================================================================
56 
58  FTFhNcmsEnergy( 0.0 ),
59  FTFxsManager( 0 ),
60  FTFXtotal( 0.0 ), FTFXelastic( 0.0 ), FTFXinelastic( 0.0 ), FTFXannihilation( 0.0 ),
61  ProbabilityOfAnnihilation( 0.0 ), ProbabilityOfElasticScatt( 0.0 ),
62  RadiusOfHNinteractions2( 0.0 ), FTFSlope( 0.0 ),
63  AvaragePt2ofElasticScattering( 0.0 ), FTFGamma0( 0.0 ),
64  DeltaProbAtQuarkExchange( 0.0 ), ProbOfSameQuarkExchange( 0.0 ),
65  ProjMinDiffMass( 0.0 ), ProjMinNonDiffMass( 0.0 ),
66  TarMinDiffMass( 0.0 ), TarMinNonDiffMass( 0.0 ),
67  AveragePt2( 0.0 ), ProbLogDistr( 0.0 ),
68  Pt2kink( 0.0 ),
69  MaxNumberOfCollisions( 0.0 ), ProbOfInelInteraction( 0.0 ), CofNuclearDestruction( 0.0 ),
70  R2ofNuclearDestruction( 0.0 ), ExcitationEnergyPerWoundedNucleon( 0.0 ),
71  DofNuclearDestruction( 0.0 ), Pt2ofNuclearDestruction( 0.0 ), MaxPt2ofNuclearDestruction( 0.0 )
72 {
73  for ( G4int i = 0; i < 4; i++ ) {
74  for ( G4int j = 0; j < 7; j++ ) {
75  ProcParams[i][j] = 0.0;
76  }
77  }
78 }
79 
80 
81 //============================================================================
82 
84 
85 
86 //============================================================================
87 
88 G4ThreadLocal bool G4FTFParameters::chipsComponentXSisInitialized = false;
89 G4ThreadLocal G4ChipsComponentXS* G4FTFParameters::chipsComponentXSinstance = 0;
90 
91 
92 //============================================================================
93 
95  G4int theA, G4int theZ, G4double PlabPerParticle ) {
96 
97  FTFXannihilation = 0.0;
98  FTFhNcmsEnergy = 0.0;
100 
101  G4int ProjectilePDGcode = particle->GetPDGEncoding();
102  G4int ProjectileabsPDGcode = std::abs( ProjectilePDGcode );
103  G4double ProjectileMass = particle->GetPDGMass();
104  G4double ProjectileMass2 = ProjectileMass * ProjectileMass;
105 
106  G4int ProjectileBaryonNumber( 0 ), AbsProjectileBaryonNumber( 0 ), AbsProjectileCharge( 0 );
107  G4bool ProjectileIsNucleus = false;
108 
109  if ( std::abs( particle->GetBaryonNumber() ) > 1 ) { // The projectile is a nucleus
110  ProjectileIsNucleus = true;
111  ProjectileBaryonNumber = particle->GetBaryonNumber();
112  AbsProjectileBaryonNumber = std::abs( ProjectileBaryonNumber );
113  AbsProjectileCharge = G4int( particle->GetPDGCharge() );
114  if ( ProjectileBaryonNumber > 1 ) {
115  ProjectilePDGcode = 2212; ProjectileabsPDGcode = 2212; // Proton
116  } else {
117  ProjectilePDGcode = -2212; ProjectileabsPDGcode = 2212; // Anti-Proton
118  }
119  ProjectileMass = G4Proton::Proton()->GetPDGMass();
120  ProjectileMass2 = sqr( ProjectileMass );
121  }
122 
123  G4double TargetMass = G4Proton::Proton()->GetPDGMass();
124  G4double TargetMass2 = TargetMass * TargetMass;
125 
126  G4double Plab = PlabPerParticle;
127  G4double Elab = std::sqrt( Plab*Plab + ProjectileMass2 );
128  G4double KineticEnergy = Elab - ProjectileMass;
129 
130  G4double S = ProjectileMass2 + TargetMass2 + 2.0*TargetMass*Elab;
131 
132  #ifdef debugFTFparams
133  G4cout << "--------- FTF Parameters --------------" << G4endl << "Proj Plab "
134  << ProjectilePDGcode << " " << Plab << G4endl << "Mass KinE " << ProjectileMass
135  << " " << KineticEnergy << G4endl << " A Z " << theA << " " << theZ << G4endl;
136  #endif
137 
138  G4double Ylab, Xtotal, Xelastic, Xannihilation;
139  G4int NumberOfTargetNucleons;
140 
141  Ylab = 0.5 * std::log( (Elab + Plab)/(Elab - Plab) );
142 
143  G4double ECMSsqr = S/GeV/GeV;
144  G4double SqrtS = std::sqrt( S )/GeV;
145 
146  #ifdef debugFTFparams
147  G4cout << "Sqrt(s) " << SqrtS << G4endl;
148  #endif
149 
150  TargetMass /= GeV; TargetMass2 /= (GeV*GeV);
151  ProjectileMass /= GeV; ProjectileMass2 /= (GeV*GeV);
152 
153  // Andrea Dotti (13Jan2013):
154  // The following lines are changed for G4MT. Originally the code was:
155  // static G4ChipsComponentXS* _instance = new G4ChipsComponentXS(); // Witek Pokorski
156  // Note the code could go back at original if _instance could be shared among threads
157  if ( ! chipsComponentXSisInitialized ) {
158  chipsComponentXSisInitialized = true;
159  chipsComponentXSinstance = new G4ChipsComponentXS();
160  }
161  G4ChipsComponentXS* _instance = chipsComponentXSinstance;
162  FTFxsManager = _instance;
163 
164  Plab /= GeV;
165  G4double Xftf = 0.0;
166  //G4double LogPlab = std::log( Plab );
167  //G4double sqrLogPlab = LogPlab * LogPlab;
168 
169  G4int NumberOfTargetProtons = theZ;
170  G4int NumberOfTargetNeutrons = theA - theZ;
171  NumberOfTargetNucleons = NumberOfTargetProtons + NumberOfTargetNeutrons;
172 
173  if ( ProjectilePDGcode == 2212 || ProjectilePDGcode == 2112 ) { // Projectile is nucleon
174 
175  G4double XtotPP = FTFxsManager->GetTotalElementCrossSection( particle, KineticEnergy, 1, 0 );
177  G4double XtotPN = FTFxsManager->GetTotalElementCrossSection( Neutron, KineticEnergy, 1, 0 );
178  G4double XelPP = FTFxsManager->GetElasticElementCrossSection( particle, KineticEnergy, 1, 0 );
179  G4double XelPN = FTFxsManager->GetElasticElementCrossSection( Neutron, KineticEnergy, 1, 0 );
180 
181  #ifdef debugFTFparams
182  G4cout << "XsPP " << XtotPP/millibarn << " " << XelPP/millibarn << G4endl
183  << "XsPN " << XtotPN/millibarn << " " << XelPN/millibarn << G4endl;
184  #endif
185 
186  if ( ! ProjectileIsNucleus ) { // Projectile is hadron
187  Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN ) /
188  NumberOfTargetNucleons;
189  Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN ) /
190  NumberOfTargetNucleons;
191  } else { // Projectile is a nucleus
192  Xtotal = (
193  AbsProjectileCharge * NumberOfTargetProtons * XtotPP +
194  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
195  NumberOfTargetNeutrons * XtotPP
196  +
197  ( AbsProjectileCharge * NumberOfTargetNeutrons +
198  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
199  NumberOfTargetProtons ) * XtotPN
200  ) / ( AbsProjectileBaryonNumber * NumberOfTargetNucleons );
201  Xelastic= (
202  AbsProjectileCharge * NumberOfTargetProtons * XelPP +
203  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
204  NumberOfTargetNeutrons * XelPP
205  +
206  ( AbsProjectileCharge * NumberOfTargetNeutrons +
207  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
208  NumberOfTargetProtons ) * XelPN
209  ) / ( AbsProjectileBaryonNumber * NumberOfTargetNucleons );
210  }
211 
212  Xannihilation = 0.0;
213  Xtotal /= millibarn;
214  Xelastic /= millibarn;
215 
216  } else if ( ProjectilePDGcode < -1000 ) { // Projectile is anti_baryon
217 
218  G4double X_a( 0.0 ), X_b( 0.0 ), X_c( 0.0 ), X_d( 0.0 );
219  G4double MesonProdThreshold = ProjectileMass + TargetMass +
220  ( 2.0 * 0.14 + 0.016 ); // 2 Mpi + DeltaE;
221 
222  if ( PlabPerParticle < 40.0*MeV ) { // Low energy limits. Projectile at rest.
223  Xtotal = 1512.9; // mb
224  Xelastic = 473.2; // mb
225  X_a = 625.1; // mb
226  X_b = 9.780; // mb
227  X_c = 49.989; // mb
228  X_d = 6.614; // mb
229  } else { // Total and elastic cross section of PbarP interactions a'la Arkhipov
230  G4double LogS = std::log( ECMSsqr / 33.0625 );
231  G4double Xasmpt = 36.04 + 0.304*LogS*LogS; // mb
232  LogS = std::log( SqrtS / 20.74 );
233  G4double Basmpt = 11.92 + 0.3036*LogS*LogS; // GeV^(-2)
234  G4double R0 = std::sqrt( 0.40874044*Xasmpt - Basmpt ); // GeV^(-1)
235 
236  G4double FlowF = SqrtS / std::sqrt( ECMSsqr*ECMSsqr + ProjectileMass2*ProjectileMass2 +
237  TargetMass2*TargetMass2 - 2.0*ECMSsqr*ProjectileMass2
238  - 2.0*ECMSsqr*TargetMass2
239  - 2.0*ProjectileMass2*TargetMass2 );
240 
241  Xtotal = Xasmpt * ( 1.0 + 13.55*FlowF/R0/R0/R0*
242  (1.0 - 4.47/SqrtS + 12.38/ECMSsqr - 12.43/SqrtS/ECMSsqr) ); // mb
243 
244  Xasmpt = 4.4 + 0.101*LogS*LogS; // mb
245  Xelastic = Xasmpt * ( 1.0 + 59.27*FlowF/R0/R0/R0*
246  (1.0 - 6.95/SqrtS + 23.54/ECMSsqr - 25.34/SqrtS/ECMSsqr ) ); // mb
247 
248  //G4cout << "Param Xtotal Xelastic " << Xtotal << " " << Xelastic << G4endl
249  // << "FlowF " << FlowF << " SqrtS " << SqrtS << G4endl
250  // << "Param Xelastic-NaN " << Xelastic << " "
251  // << 1.5*16.654/pow(ECMSsqr/2.176/2.176,2.2) << " " << ECMSsqr << G4endl;
252 
253  X_a = 25.0*FlowF; // mb, 3-shirts diagram
254 
255  if ( SqrtS < MesonProdThreshold ) {
256  X_b = 3.13 + 140.0*std::pow( MesonProdThreshold - SqrtS, 2.5 ); // mb anti-quark-quark annihilation
257  Xelastic -= 3.0*X_b; // Xel-X(PbarP->NNbar)
258  } else {
259  X_b = 6.8/SqrtS; // mb anti-quark-quark annihilation
260  Xelastic -= 3.0*X_b; // Xel-X(PbarP->NNbar)
261  }
262 
263  X_c = 2.0*FlowF*sqr( ProjectileMass + TargetMass )/ECMSsqr; // mb rearrangement
264 
265  //G4cout << "Old new Xa " << 35.*FlowF << " " << 25.*FlowF << G4endl;
266 
267  X_d = 23.3/ECMSsqr; // mb anti-quark-quark string creation
268  }
269 
270  //G4cout << "Param Xtotal Xelastic " << Xtotal << " " << Xelastic << G4endl
271  // << "Para a b c d " << X_a << " " << X_b << " " << X_c << " " << X_d << G4endl;
272  // << "Para a b c d " << X_a << " " << 5.*X_b << " " << 5.*X_c << " " << 6.*X_d
273  // << G4endl;
274 
275  G4double Xann_on_P( 0.0), Xann_on_N( 0.0 );
276 
277  if ( ProjectilePDGcode == -2212 ) { // Pbar+P/N
278  Xann_on_P = X_a + X_b*5.0 + X_c*5.0 + X_d*6.0;
279  Xann_on_N = X_a + X_b*4.0 + X_c*4.0 + X_d*4.0;
280  } else if ( ProjectilePDGcode == -2112 ) { // NeutrBar+P/N
281  Xann_on_P = X_a + X_b*4.0 + X_c*4.0 + X_d*4.0;
282  Xann_on_N = X_a + X_b*5.0 + X_c*5.0 + X_d*6.0;
283  } else if ( ProjectilePDGcode == -3122 ) { // LambdaBar+P/N
284  Xann_on_P = X_a + X_b*3.0 + X_c*3.0 + X_d*2.0;
285  Xann_on_N = X_a + X_b*3.0 + X_c*3.0 + X_d*2.0;
286  } else if ( ProjectilePDGcode == -3112 ) { // Sigma-Bar+P/N
287  Xann_on_P = X_a + X_b*2.0 + X_c*2.0 + X_d*0.0;
288  Xann_on_N = X_a + X_b*4.0 + X_c*4.0 + X_d*2.0;
289  } else if ( ProjectilePDGcode == -3212 ) { // Sigma0Bar+P/N
290  Xann_on_P = X_a + X_b*3.0 + X_c*3.0 + X_d*2.0;
291  Xann_on_N = X_a + X_b*3.0 + X_c*3.0 + X_d*2.0;
292  } else if ( ProjectilePDGcode == -3222 ) { // Sigma+Bar+P/N
293  Xann_on_P = X_a + X_b*4.0 + X_c*4.0 + X_d*2.0;
294  Xann_on_N = X_a + X_b*2.0 + X_c*2.0 + X_d*0.0;
295  } else if ( ProjectilePDGcode == -3312 ) { // Xi-Bar+P/N
296  Xann_on_P = X_a + X_b*1.0 + X_c*1.0 + X_d*0.0;
297  Xann_on_N = X_a + X_b*2.0 + X_c*2.0 + X_d*0.0;
298  } else if ( ProjectilePDGcode == -3322 ) { // Xi0Bar+P/N
299  Xann_on_P = X_a + X_b*2.0 + X_c*2.0 + X_d*0.0;
300  Xann_on_N = X_a + X_b*1.0 + X_c*1.0 + X_d*0.0;
301  } else if ( ProjectilePDGcode == -3334 ) { // Omega-Bar+P/N
302  Xann_on_P = X_a + X_b*0.0 + X_c*0.0 + X_d*0.0;
303  Xann_on_N = X_a + X_b*0.0 + X_c*0.0 + X_d*0.0;
304  } else {
305  G4cout << "Unknown anti-baryon for FTF annihilation" << G4endl;
306  }
307 
308  //G4cout << "Sum " << Xann_on_P << G4endl;
309 
310  if ( ! ProjectileIsNucleus ) { // Projectile is anti-baryon
311  Xannihilation = ( NumberOfTargetProtons * Xann_on_P + NumberOfTargetNeutrons * Xann_on_N )
312  / NumberOfTargetNucleons;
313  } else { // Projectile is a nucleus
314  Xannihilation = (
315  ( AbsProjectileCharge * NumberOfTargetProtons +
316  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
317  NumberOfTargetNeutrons ) * Xann_on_P
318  +
319  ( AbsProjectileCharge * NumberOfTargetNeutrons +
320  ( AbsProjectileBaryonNumber - AbsProjectileCharge ) *
321  NumberOfTargetProtons ) * Xann_on_N
322  ) / ( AbsProjectileBaryonNumber * NumberOfTargetNucleons );
323  }
324 
325  //G4double Xftf = 0.0;
326  MesonProdThreshold = ProjectileMass + TargetMass + (0.14 + 0.08); // Mpi + DeltaE
327  if ( SqrtS > MesonProdThreshold ) {
328  Xftf = 36.0 * ( 1.0 - MesonProdThreshold/SqrtS );
329  }
330 
331  Xtotal = Xelastic + Xannihilation + Xftf;
332 
333  #ifdef debugFTFparams
334  G4cout << "Plab Xtotal, Xelastic Xinel Xftf " << Plab << " " << Xtotal << " " << Xelastic
335  << " " << Xtotal - Xelastic << " " << Xtotal - Xelastic - Xannihilation << G4endl
336  << "Plab Xelastic/Xtotal, Xann/Xin " << Plab << " " << Xelastic/Xtotal << " "
337  << Xannihilation/(Xtotal - Xelastic) << G4endl;
338  #endif
339 
340  } else if ( ProjectilePDGcode == 211 ) { // Projectile is PionPlus
341 
342  G4double XtotPiP = FTFxsManager->GetTotalElementCrossSection( particle, KineticEnergy, 1, 0 );
344  G4double XtotPiN = FTFxsManager->GetTotalElementCrossSection( PionMinus, KineticEnergy, 1, 0 );
345  G4double XelPiP = FTFxsManager->GetElasticElementCrossSection( particle, KineticEnergy, 1, 0 );
346  G4double XelPiN = FTFxsManager->GetElasticElementCrossSection( PionMinus, KineticEnergy, 1, 0 );
347  Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN )
348  / NumberOfTargetNucleons;
349  Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN )
350  / NumberOfTargetNucleons;
351  Xannihilation = 0.0;
352  Xtotal /= millibarn;
353  Xelastic /= millibarn;
354 
355  } else if ( ProjectilePDGcode == -211 ) { // Projectile is PionMinus
356 
357  G4double XtotPiP = FTFxsManager->GetTotalElementCrossSection( particle, KineticEnergy, 1, 0 );
359  G4double XtotPiN = FTFxsManager->GetTotalElementCrossSection( PionPlus, KineticEnergy, 1, 0 );
360  G4double XelPiP = FTFxsManager->GetElasticElementCrossSection( particle, KineticEnergy, 1, 0 );
361  G4double XelPiN = FTFxsManager->GetElasticElementCrossSection( PionPlus, KineticEnergy, 1, 0 );
362  Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN )
363  / NumberOfTargetNucleons;
364  Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN )
365  / NumberOfTargetNucleons;
366  Xannihilation = 0.0;
367  Xtotal /= millibarn;
368  Xelastic /= millibarn;
369 
370  } else if ( ProjectilePDGcode == 111 ) { // Projectile is PionZero
371 
373  G4double XtotPipP = FTFxsManager->GetTotalElementCrossSection( PionPlus, KineticEnergy, 1, 0 );
375  G4double XtotPimP = FTFxsManager->GetTotalElementCrossSection( PionMinus, KineticEnergy, 1, 0 );
376  G4double XelPipP = FTFxsManager->GetElasticElementCrossSection( PionPlus, KineticEnergy, 1, 0 );
377  G4double XelPimP = FTFxsManager->GetElasticElementCrossSection( PionMinus, KineticEnergy, 1, 0 );
378  G4double XtotPiP = ( XtotPipP + XtotPimP ) / 2.0;
379  G4double XtotPiN = XtotPiP;
380  G4double XelPiP = ( XelPipP + XelPimP ) / 2.0;
381  G4double XelPiN = XelPiP;
382  Xtotal = ( NumberOfTargetProtons * XtotPiP + NumberOfTargetNeutrons * XtotPiN )
383  / NumberOfTargetNucleons;
384  Xelastic = ( NumberOfTargetProtons * XelPiP + NumberOfTargetNeutrons * XelPiN )
385  / NumberOfTargetNucleons;
386  Xannihilation = 0.0;
387  Xtotal /= millibarn;
388  Xelastic /= millibarn;
389 
390  } else if ( ProjectilePDGcode == 321 ) { // Projectile is KaonPlus
391 
392  G4double XtotKP = FTFxsManager->GetTotalElementCrossSection( particle, KineticEnergy, 1, 0 );
394  G4double XtotKN = FTFxsManager->GetTotalElementCrossSection( KaonMinus, KineticEnergy, 1, 0 );
395  G4double XelKP = FTFxsManager->GetElasticElementCrossSection( particle, KineticEnergy, 1, 0 );
396  G4double XelKN = FTFxsManager->GetElasticElementCrossSection( KaonMinus, KineticEnergy, 1, 0 );
397  Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN )
398  / NumberOfTargetNucleons;
399  Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN )
400  / NumberOfTargetNucleons;
401  Xannihilation = 0.0;
402  Xtotal /= millibarn;
403  Xelastic /= millibarn;
404 
405  } else if ( ProjectilePDGcode == -321 ) { // Projectile is KaonMinus
406 
407  G4double XtotKP = FTFxsManager->GetTotalElementCrossSection( particle, KineticEnergy, 1, 0 );
409  G4double XtotKN = FTFxsManager->GetTotalElementCrossSection( KaonPlus, KineticEnergy, 1, 0 );
410  G4double XelKP = FTFxsManager->GetElasticElementCrossSection( particle, KineticEnergy, 1, 0 );
411  G4double XelKN = FTFxsManager->GetElasticElementCrossSection( KaonPlus, KineticEnergy, 1, 0 );
412  Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN )
413  / NumberOfTargetNucleons;
414  Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN )
415  / NumberOfTargetNucleons;
416  Xannihilation = 0.0;
417  Xtotal /= millibarn;
418  Xelastic /= millibarn;
419 
420  } else if ( ProjectilePDGcode == 311 || ProjectilePDGcode == 130 ||
421  ProjectilePDGcode == 310 ) { // Projectile is KaonZero
422 
424  G4double XtotKpP = FTFxsManager->GetTotalElementCrossSection( KaonPlus, KineticEnergy, 1, 0 );
426  G4double XtotKmP = FTFxsManager->GetTotalElementCrossSection( KaonMinus, KineticEnergy, 1, 0 );
427  G4double XelKpP = FTFxsManager->GetElasticElementCrossSection( KaonPlus, KineticEnergy, 1, 0 );
428  G4double XelKmP = FTFxsManager->GetElasticElementCrossSection( KaonMinus, KineticEnergy, 1, 0 );
429  G4double XtotKP = ( XtotKpP + XtotKmP ) / 2.0;
430  G4double XtotKN = XtotKP;
431  G4double XelKP = ( XelKpP + XelKmP ) / 2.0;
432  G4double XelKN = XelKP;
433  Xtotal = ( NumberOfTargetProtons * XtotKP + NumberOfTargetNeutrons * XtotKN )
434  / NumberOfTargetNucleons;
435  Xelastic = ( NumberOfTargetProtons * XelKP + NumberOfTargetNeutrons * XelKN )
436  / NumberOfTargetNucleons;
437  Xannihilation = 0.0;
438  Xtotal /= millibarn;
439  Xelastic /= millibarn;
440 
441  } else { // Projectile is undefined, Nucleon assumed
442 
444  G4double XtotPP = FTFxsManager->GetTotalElementCrossSection( Proton, KineticEnergy, 1, 0 );
446  G4double XtotPN = FTFxsManager->GetTotalElementCrossSection( Neutron, KineticEnergy, 1, 0 );
447  G4double XelPP = FTFxsManager->GetElasticElementCrossSection( Proton, KineticEnergy, 1, 0 );
448  G4double XelPN = FTFxsManager->GetElasticElementCrossSection( Neutron, KineticEnergy, 1, 0 );
449  Xtotal = ( NumberOfTargetProtons * XtotPP + NumberOfTargetNeutrons * XtotPN )
450  / NumberOfTargetNucleons;
451  Xelastic = ( NumberOfTargetProtons * XelPP + NumberOfTargetNeutrons * XelPN )
452  / NumberOfTargetNucleons;
453  Xannihilation = 0.0;
454  Xtotal /= millibarn;
455  Xelastic /= millibarn;
456 
457  };
458 
459  // Geometrical parameters
460  SetTotalCrossSection( Xtotal );
461  SetElastisCrossSection( Xelastic );
462  SetInelasticCrossSection( Xtotal - Xelastic );
463 
464  //G4cout << "Plab Xtotal, Xelastic Xinel Xftf " << Plab << " " << Xtotal << " " << Xelastic
465  // << " " << Xtotal - Xelastic << " " << Xtotal - Xelastic - Xannihilation << G4endl;
466  //if (Xtotal - Xelastic != 0.0 ) {
467  // G4cout << "Plab Xelastic/Xtotal, Xann/Xin " << Plab << " " << Xelastic/Xtotal
468  // << " " << Xannihilation / (Xtotal - Xelastic) << G4endl;
469  //} else {
470  // G4cout << "Plab Xelastic/Xtotal, Xann " << Plab << " " << Xelastic/Xtotal
471  // << " " << Xannihilation << G4endl;
472  //}
473  //G4int Uzhi; G4cin >> Uzhi;
474 
475  // Interactions with elastic and inelastic collisions
476  SetProbabilityOfElasticScatt( Xtotal, Xelastic );
477  SetRadiusOfHNinteractions2( Xtotal/pi/10.0 );
478  if ( Xtotal - Xelastic == 0.0 ) {
480  } else {
481  SetProbabilityOfAnnihilation( Xannihilation / (Xtotal - Xelastic) );
482  }
483 
484  // No elastic scattering
485  //SetProbabilityOfElasticScatt( Xtotal, 0.0 );
486  //SetRadiusOfHNinteractions2( (Xtotal - Xelastic)/pi/10.0 );
487  //SetProbabilityOfAnnihilation( 1.0 );
488  //SetProbabilityOfAnnihilation( 0.0 );
489 
490  SetSlope( Xtotal*Xtotal/16.0/pi/Xelastic/0.3894 ); // Slope parameter of elastic scattering
491  // (GeV/c)^(-2))
492  //G4cout << "Slope " << GetSlope() << G4endl;
493  SetGamma0( GetSlope()*Xtotal/10.0/2.0/pi );
494 
495  // Parameters of elastic scattering
496  // Gaussian parametrization of elastic scattering amplitude assumed
497  SetAvaragePt2ofElasticScattering( 1.0/( Xtotal*Xtotal/16.0/pi/Xelastic/0.3894 )*GeV*GeV );
498  //G4cout << "AvaragePt2ofElasticScattering " << GetAvaragePt2ofElasticScattering() << G4endl;
499 
500  // Parameters of excitations
501 
502  G4double Xinel = Xtotal - Xelastic; // Uzhi 25.04.2012
503  //G4cout << "Param ProjectilePDGcode " << ProjectilePDGcode << G4endl;
504 
505  if ( ProjectilePDGcode > 1000 ) { // Projectile is baryon
506 
507  // Proc# A1 B1 A2 B2 A3 Atop Ymin
508  SetParams( 0, 13.71, 1.75, -214.4 , 4.25, 0.0, 0.632, 1.45 ); // Qexchange without Exc.
509  SetParams( 1, 0.2, 0.0 , - 3.289, 2.0 , 0.0, 0.0 , 1.40 ); // Qexchange with Exc.
510  SetParams( 2, 6.0/Xinel, 0.0 , -6.0/Xinel*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Projectile diffraction
511  SetParams( 3, 6.0/Xinel, 0.0 , -6.0/Xinel*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Target diffraction
512 
513  SetParams( 1, 0.3, 0.5 , - 3.289, 2.0 , 0.0, 0.0 , 1.40 ); // Qexchange with Exc.
514  if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
515  SetParams( 2, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
516  SetParams( 3, 0.0, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
517  }
519  if ( NumberOfTargetNucleons > 26 ) {
521  } else {
523  }
524  SetProjMinDiffMass( 1.16 ); // GeV
525  SetProjMinNonDiffMass( 1.16 ); // GeV
526  SetTarMinDiffMass( 1.16 ); // GeV
527  SetTarMinNonDiffMass( 1.16 ); // GeV
528  SetAveragePt2( 0.3 ); // GeV^2
529  SetProbLogDistr(0.5 );
530 
531  } else if( ProjectilePDGcode < -1000 ) { // Projectile is anti_baryon
532 
533  // Proc# A1 B1 A2 B2 A3 Atop Ymin
534  SetParams( 0, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 1000.0 ); // Qexchange without Exc.
535  SetParams( 1, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , 1000.0 ); // Qexchange with Exc.
536  if ( Xftf > 0.0 ) {
537  SetParams( 2, 6.0/Xftf, 0.0 , -6.0/Xftf*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Projectile diffraction
538  SetParams( 3, 6.0/Xftf, 0.0 , -6.0/Xftf*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Target diffraction
539  } else {
540  SetParams( 2, 0.5 , 0.0 , 0.0 , 0.0 , 0.0, 0.5 , 1000.0 ); // Projectile diffraction
541  SetParams( 3, 0.5 , 0.0 , 0.0 , 0.0 , 0.0, 0.5 , 1000.0 ); // Target diffraction
542  }
543  if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
544  SetParams( 2, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
545  SetParams( 3, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
546  }
549  SetProjMinDiffMass( ProjectileMass + 0.22 ); // GeV
550  SetProjMinNonDiffMass( ProjectileMass + 0.22 ); // GeV
551  SetTarMinDiffMass( TargetMass + 0.22 ); // GeV
552  SetTarMinNonDiffMass( TargetMass + 0.22 ); // GeV
553  SetAveragePt2( 0.3 ); // 0.15 GeV^2 // Uzhi 21.05.2012
554  SetProbLogDistr( 0.5 ); // Uzhi 21.05.2012
555 
556  } else if ( ProjectileabsPDGcode == 211 || ProjectilePDGcode == 111 ) { // Projectile is Pion
557 
558  // Proc# A1 B1 A2 B2 A3 Atop Ymin
559  SetParams( 0, 568.0 , 2.1 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Qexchange without Exc.
560  SetParams( 1, 6.0 , 0.6 , -26.9 , 1.1 , 0.0, 0.0 , 3.0 ); // Qexchange with Exc.
561  G4double Wprd = 0.0;
562  if ( Xinel > 0.0 ) Wprd = 0.64 *( 6.2 - 3.7*std::exp( - sqr( SqrtS - 7.0 ) / 16.0 ) ) / Xinel;
563  SetParams( 2, Wprd, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
564  G4double Wtrd = 0.0;
565  if ( Xinel > 0.0 ) Wtrd = ( 2.0 + 22.0/ECMSsqr ) / Xinel;
566  SetParams( 3, Wtrd, 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
567  if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
568  SetParams( 2, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
569  SetParams( 3, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
570  }
571  SetDeltaProbAtQuarkExchange( 0.56 ); // (0.35)
572  SetProjMinDiffMass( 0.5 ); // (0.5) // GeV
573  SetProjMinNonDiffMass( 0.5 ); // (0.5) // GeV
574  SetTarMinDiffMass( 1.16 ); // GeV
575  SetTarMinNonDiffMass( 1.16 ); // GeV
576  SetAveragePt2( 0.3 ); // GeV^2
577  SetProbLogDistr( 1.0 ); // (0.0) // Uzhi 21.05.2012
578 
579  } else if ( ProjectileabsPDGcode == 321 || ProjectileabsPDGcode == 311 ||
580  ProjectilePDGcode == 130 || ProjectilePDGcode == 310 ) { // Projectile is Kaon
581 
582  // Proc# A1 B1 A2 B2 A3 Atop Ymin
583  SetParams( 0, 70.0 , 2.75, 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Qexchange without Exc.
584  SetParams( 1, 30.0 , 1.5 , -50.57 , 1.83, 0.0, 0.0 , 1.70 ); // Qexchange with Exc.
585  SetParams( 2, 0.6 , 0.75, -12.05 , 3.25, 0.0, 0.0 , 1.20 ); // Projectile diffraction
586  SetParams( 3, 6.0 , 1.0 , -12.08 , 1.5 , 0.1, 0.0 , 1.20 ); // Target diffraction
587  if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
588  SetParams( 2, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
589  SetParams( 3, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
590  }
592  SetProjMinDiffMass( 0.7 ); // (1.4) // (0.7) // GeV
593  SetProjMinNonDiffMass( 0.7 ); // (1.4) // (0.7) // GeV
594  SetTarMinDiffMass( 1.16 ); // GeV
595  SetTarMinNonDiffMass( 1.16 ); // GeV
596  SetAveragePt2( 0.3 ); // GeV^2 7 June 2011
597  SetProbLogDistr( 1.0 ); // Uzhi 5.06.2012
598 
599  } else { // Projectile is undefined, Nucleon assumed
600 
601  // Proc# A1 B1 A2 B2 A3 Atop Ymin
602  SetParams( 0, 13.71, 1.75, -214.4 , 4.25, 0.0, 0.632, 1.45 ); // Qexchange without Exc.
603  SetParams( 1, 0.2 , 0.0 , -16.445, 2.0 , 0.0, 0.0 , 1.40 ); // Qexchange with Exc.
604  SetParams( 2, 6.0/Xinel, 0.0 , -6.0/Xinel*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Projectile diffraction
605  SetParams( 3, 6.0/Xinel, 0.0 , -6.0/Xinel*8.48, 2.25, 0.0, 0.0 , 0.95 ); // Target diffraction
606  if ( AbsProjectileBaryonNumber > 1 || NumberOfTargetNucleons > 1 ) {
607  SetParams( 2, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Projectile diffraction
608  SetParams( 3, 0.0 , 0.0 , 0.0 , 0.0 , 0.0, 0.0 , -100.0 ); // Target diffraction
609  }
610  SetDeltaProbAtQuarkExchange( 0.0 ); // 7 June 2011
612  SetProjMinDiffMass( ProjectileMass + 0.22 ); // GeV
613  SetProjMinNonDiffMass( ProjectileMass + 0.22 ); // GeV
614  SetTarMinDiffMass( TargetMass + 0.22 ); // GeV
615  SetTarMinNonDiffMass( TargetMass + 0.22 ); // GeV
616  SetAveragePt2( 0.3 ); // (0.15) GeV^2 Uzhi 21.05.2012
617  SetProbLogDistr( 0.5 ); // Uzhi 21.05.2012
618 
619  }
620 
621  //if ( theA > 4 ) SetProbabilityOfProjDiff( 0.0 ); // Uzhi 6.07.2012 Closed
622  //G4cout << "Param Get Min Dif " << GetProjMinNonDiffMass() << G4endl;
623 
624  // Set parameters of a string kink
625  SetPt2Kink( 6.0*GeV*GeV );
626  G4double Puubar( 1.0/3.0 ), Pddbar( 1.0/3.0 ), Pssbar( 1.0/3.0 ); // SU(3) symmetry
627  //G4double Puubar( 0.41 ), Pddbar( 0.41 ), Pssbar( 0.18 ); // Broken SU(3) symmetry
628  SetQuarkProbabilitiesAtGluonSplitUp( Puubar, Pddbar, Pssbar );
629 
630  // Set parameters of nuclear destruction
631  if ( ProjectileabsPDGcode < 1000 ) { // Meson projectile
632  SetMaxNumberOfCollisions( Plab, 2.0 ); // 3.0 )
633  SetCofNuclearDestruction( 1.0*std::exp( 4.0*(Ylab - 2.1) )/
634  ( 1.0 + std::exp( 4.0*(Ylab - 2.1) ) ) ); // 0.62 1.0
637  SetPt2ofNuclearDestruction( ( 0.035 + 0.04*std::exp( 4.0*(Ylab - 2.5) )/
638  ( 1.0 + std::exp( 4.0*(Ylab - 2.5) ) ) )*GeV*GeV ); // 0.09
639  SetMaxPt2ofNuclearDestruction( 1.0*GeV*GeV );
641  } else if ( ProjectilePDGcode < -1000 ) { // for anti-baryon projectile
642  //G4cout << "Nucl destruct Anti Bar" << G4endl;
643  SetMaxNumberOfCollisions( Plab, 2.0 ); // 3.0 )
644  SetCofNuclearDestruction( 1.0*std::exp( 4.0*(Ylab - 2.1) )/
645  ( 1.0 + std::exp( 4.0*(Ylab - 2.1) ) ) ); // 0.62 1.0
648  SetPt2ofNuclearDestruction( ( 0.035 + 0.04*std::exp( 4.0*(Ylab - 2.5) )/
649  ( 1.0 + std::exp( 4.0*(Ylab - 2.5) ) ) )*GeV*GeV ); // 0.09
650  SetMaxPt2ofNuclearDestruction( 1.0*GeV*GeV );
652  if ( Plab < 2.0 ) { // 2 GeV/c
653  // For slow anti-baryon we have to garanty putting on mass-shell
655  SetR2ofNuclearDestruction( 1.5*fermi*fermi );
656  SetDofNuclearDestruction( 0.01 );
657  SetPt2ofNuclearDestruction( 0.035*GeV*GeV );
658  SetMaxPt2ofNuclearDestruction( 0.04*GeV*GeV );
659  //SetExcitationEnergyPerWoundedNucleon( 0.0 ); // ?????
660  }
661  } else { // Projectile baryon assumed
662  SetMaxNumberOfCollisions( Plab, 2.0 ); // 3.0 )
663  SetCofNuclearDestruction( 1.0*std::exp( 4.0*(Ylab - 2.1) )/
664  ( 1.0 + std::exp( 4.0*(Ylab - 2.1) ) ) ); // 0.62 1.0
667  SetPt2ofNuclearDestruction( ( 0.035 + 0.04*std::exp( 4.0*(Ylab - 2.5) )/
668  ( 1.0 + std::exp( 4.0*(Ylab - 2.5) ) ) )*GeV*GeV ); // 0.09
669  SetMaxPt2ofNuclearDestruction( 1.0*GeV*GeV );
671  }
672 
673  //SetCofNuclearDestruction( 0.47*std::exp( 2.0*(Ylab - 2.5) )/( 1.0 + std::exp( 2.0*(Ylab - 2.5) ) ) );
674  //SetPt2ofNuclearDestruction( ( 0.035 + 0.1*std::exp( 4.0*(Ylab - 3.0) )/( 1.0 + std::exp( 4.0*(Ylab - 3.0) ) ) )*GeV*GeV );
675 
676  //SetMagQuarkExchange( 120.0 ); // 210.0 PipP
677  //SetSlopeQuarkExchange( 2.0 );
678  //SetDeltaProbAtQuarkExchange( 0.6 );
679  //SetProjMinDiffMass( 0.7 ); // GeV 1.1
680  //SetProjMinNonDiffMass( 0.7 ); // GeV
681  //SetProbabilityOfProjDiff( 0.0); // 0.85*std::pow( s/GeV/GeV, -0.5 ) ); // 40/32 X-dif/X-inel
682  //SetTarMinDiffMass( 1.1 ); // GeV
683  //SetTarMinNonDiffMass( 1.1 ); // GeV
684  //SetProbabilityOfTarDiff( 0.0 ); // 0.85*std::pow( s/GeV/GeV, -0.5 ) ); // 40/32 X-dif/X-inel
685 
686  //SetAveragePt2( 0.3 ); // GeV^2
687  //------------------------------------
688  //SetProbabilityOfElasticScatt( 1.0, 1.0); //(Xtotal, Xelastic);
689  //SetProbabilityOfProjDiff( 1.0*0.62*std::pow( s/GeV/GeV, -0.51 ) ); // 0->1
690  //SetProbabilityOfTarDiff( 4.0*0.62*std::pow( s/GeV/GeV, -0.51 ) ); // 2->4
691  //SetAveragePt2( 0.3 ); // (0.15)
692  //SetAvaragePt2ofElasticScattering( 0.0 );
693 
694  //SetMaxNumberOfCollisions( Plab, 6.0 ); //(4.0*(Plab + 0.01), Plab); // 6.0 );
695  //SetAveragePt2( 0.15 );
696  //G4cout << "Cnd " << GetCofNuclearDestruction() << G4endl;
697  //SetCofNuclearDestruction( 0.4 ); // (0.2) // (0.4)
698  //SetExcitationEnergyPerWoundedNucleon( 0.0*MeV ); // (75.0*MeV)
699  //SetDofNuclearDestruction( 0.0 );
700  //SetPt2ofNuclearDestruction( 0.0*GeV*GeV ); // (0.168*GeV*GeV)
701  //G4cout << "Pt2 " << GetPt2ofNuclearDestruction()/GeV/GeV << G4endl;
702  //G4int Uzhi; G4cin >> Uzhi;
703 
704 }
705 
706 
707 //============================================================================
708 
710  G4double Prob( 0.0 );
711  if ( y < ProcParams[ProcN][6] ) {
712  Prob = ProcParams[ProcN][5];
713  return Prob;
714  }
715  Prob = ProcParams[ProcN][0] * std::exp( -ProcParams[ProcN][1]*y ) +
716  ProcParams[ProcN][2] * std::exp( -ProcParams[ProcN][3]*y ) +
717  ProcParams[ProcN][4];
718  return Prob;
719 }
void SetProbLogDistr(const G4double aValue)
#define G4ThreadLocal
Definition: tls.hh:52
void SetTarMinNonDiffMass(const G4double aValue)
void SetDofNuclearDestruction(const G4double aValue)
void SetSlope(const G4double Slope)
G4ChipsComponentXS * FTFxsManager
int G4int
Definition: G4Types.hh:78
int millibarn
Definition: hepunit.py:40
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
void SetGamma0(const G4double Gamma0)
G4GLOB_DLL std::ostream G4cout
void SetAveragePt2(const G4double aValue)
G4double ProcParams[4][7]
void SetElastisCrossSection(const G4double Xelastic)
bool G4bool
Definition: G4Types.hh:79
void SetPt2Kink(const G4double aValue)
void SetRadiusOfHNinteractions2(const G4double Radius2)
void SetMaxNumberOfCollisions(const G4double aValue, const G4double bValue)
void SetExcitationEnergyPerWoundedNucleon(const G4double aValue)
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetProjMinNonDiffMass(const G4double aValue)
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
void SetQuarkProbabilitiesAtGluonSplitUp(const G4double Puubar, const G4double Pddbar, const G4double Pssbar)
virtual G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double N)
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double GetProcProb(const G4int ProcN, const G4double y)
void SetInelasticCrossSection(const G4double Xinelastic)
void SetProbabilityOfElasticScatt(const G4double Xtotal, const G4double Xelastic)
void SetDeltaProbAtQuarkExchange(const G4double aValue)
void SetTotalCrossSection(const G4double Xtotal)
void SetProjMinDiffMass(const G4double aValue)
G4double ProbOfSameQuarkExchange
G4double GetPDGMass() const
void SetMaxPt2ofNuclearDestruction(const G4double aValue)
void SetParams(const G4int ProcN, const G4double A1, const G4double B1, const G4double A2, const G4double B2, const G4double A3, const G4double Atop, const G4double Ymin)
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
void SetCofNuclearDestruction(const G4double aValue)
void SetProbOfSameQuarkExchange(const G4double aValue)
G4double FTFXannihilation
#define G4endl
Definition: G4ios.hh:61
virtual G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double N)
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
void SetProbabilityOfAnnihilation(const G4double aValue)
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
G4double GetPDGCharge() const
void SetPt2ofNuclearDestruction(const G4double aValue)
void SetAvaragePt2ofElasticScattering(const G4double aPt2)
void SetTarMinDiffMass(const G4double aValue)
void SetR2ofNuclearDestruction(const G4double aValue)