Geant4.10
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
F01DetectorConstruction.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 /// \file field/field01/src/F01DetectorConstruction.cc
27 /// \brief Implementation of the F01DetectorConstruction class
28 //
29 //
30 // $Id: F01DetectorConstruction.cc 77881 2013-11-29 08:37:53Z gcosmo $
31 //
32 //
33 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
34 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
35 
37 #include "F01DetectorMessenger.hh"
38 
39 #include "F01CalorimeterSD.hh"
40 #include "F01FieldSetup.hh"
41 
42 #include "G4GeometryManager.hh"
43 #include "G4PhysicalVolumeStore.hh"
44 #include "G4LogicalVolumeStore.hh"
45 #include "G4SolidStore.hh"
46 
47 #include "G4Material.hh"
48 #include "G4Tubs.hh"
49 #include "G4LogicalVolume.hh"
50 #include "G4PVPlacement.hh"
51 #include "G4RunManager.hh"
52 #include "G4AutoDelete.hh"
53 
54 #include "G4PhysicalConstants.hh"
55 #include "G4SystemOfUnits.hh"
56 
57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
58 
61  fDetectorMessenger(0),
62  fSolidWorld(0), fLogicWorld(0), fPhysiWorld(0),
63  fSolidAbsorber(0), fLogicAbsorber(0), fPhysiAbsorber(0),
64  fAbsorberMaterial(0), fAbsorberThickness(0.), fAbsorberRadius(0.),
65  fZAbsorber(0.), fZStartAbs(0.), fZEndAbs(0.),
66  fWorldMaterial(0), fWorldSizeR(0.), fWorldSizeZ(0.)
67 {
68  // default parameter values of the calorimeter
69 
70  fWorldSizeZ = 44000.*mm;
71  fWorldSizeR = 22000.*mm;
72 
73  fAbsorberThickness = 1.0*mm;
74 
75  fAbsorberRadius = 20000.*mm;
76  fZAbsorber = 21990.0*mm;
77 
78  // create commands for interactive definition of the calorimeter
79 
80  fDetectorMessenger = new F01DetectorMessenger(this);
81 
82  // create materials
83 
84  DefineMaterials();
85 
86 }
87 
88 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
89 
91 {
92  delete fDetectorMessenger;
93 }
94 
95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
96 
98 {
99  return ConstructCalorimeter();
100 }
101 
102 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
103 
104 void F01DetectorConstruction::DefineMaterials()
105 {
106  //This function illustrates the possible ways to define materials
107 
108  G4String name, symbol; // a=mass of a mole;
109  G4double a, z, density; // z=mean number of protons;
110  G4int nel;
111  G4int ncomponents;
112  G4double fractionmass, pressure, temperature;
113 
114  //
115  // define Elements
116  //
117 
118  a = 1.01*g/mole;
119  G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a);
120 
121  a = 12.01*g/mole;
122  G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a);
123 
124  a = 14.01*g/mole;
125  G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);
126 
127  a = 16.00*g/mole;
128  G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a);
129 
130  a = 39.948*g/mole;
131  G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a);
132 
133  //
134  // define simple materials
135  //
136 
137  // Mylar
138 
139  density = 1.39*g/cm3;
140  G4Material* mylar = new G4Material(name="Mylar", density, nel=3);
141  mylar->AddElement(elO,2);
142  mylar->AddElement(elC,5);
143  mylar->AddElement(elH,4);
144 
145  // Polypropelene
146 
147  G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2);
148  CH2->AddElement(elH,2);
149  CH2->AddElement(elC,1);
150 
151  // Krypton as detector gas, STP
152 
153  density = 3.700*mg/cm3;
154  a = 83.80*g/mole;
155  G4Material* Kr = new G4Material(name="Kr",z=36., a, density );
156 
157  // Dry air (average composition)
158 
159  density = 1.7836*mg/cm3; // STP
160  G4Material* argon = new G4Material(name="Argon" , density, ncomponents=1);
161  argon->AddElement(elAr, 1);
162 
163  density = 1.25053*mg/cm3; // STP
164  G4Material* nitrogen = new G4Material(name="N2" , density, ncomponents=1);
165  nitrogen->AddElement(elN, 2);
166 
167  density = 1.4289*mg/cm3; // STP
168  G4Material* oxygen = new G4Material(name="O2" , density, ncomponents=1);
169  oxygen->AddElement(elO, 2);
170 
171  density = 1.2928*mg/cm3; // STP
172  density *= 1.0e-8; // pumped vacuum
173 
174  temperature = STP_Temperature;
175  pressure = 1.0e-8*STP_Pressure;
176 
177  G4Material* air = new G4Material(name="Air" , density, ncomponents=3,
178  kStateGas,temperature,pressure);
179  air->AddMaterial( nitrogen, fractionmass = 0.7557 );
180  air->AddMaterial( oxygen, fractionmass = 0.2315 );
181 
182  air->AddMaterial( argon, fractionmass = 0.0128 );
183 
184  // Xenon as detector gas, STP
185 
186  density = 5.858*mg/cm3;
187  a = 131.29*g/mole;
188  G4Material* Xe = new G4Material(name="Xenon",z=54., a, density );
189 
190  // Carbon dioxide, STP
191 
192  density = 1.842*mg/cm3;
193  G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2);
194  CarbonDioxide->AddElement(elC,1);
195  CarbonDioxide->AddElement(elO,2);
196 
197  // 80% Xe + 20% CO2, STP
198 
199  density = 5.0818*mg/cm3;
200  G4Material* Xe20CO2 = new G4Material(name="Xe20CO2", density, ncomponents=2);
201  Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 );
202  Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 );
203 
204  // 80% Kr + 20% CO2, STP
205 
206  density = 3.601*mg/cm3;
207  G4Material* Kr20CO2 = new G4Material(name="Kr20CO2", density, ncomponents=2);
208  Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 );
209  Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 );
210 
212 
213  // default materials of the calorimeter
214 
215  fAbsorberMaterial = air; // Kr20CO2; // XeCO2CF4;
216 
217  fWorldMaterial = air;
218 }
219 
220 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
221 
222 G4VPhysicalVolume* F01DetectorConstruction::ConstructCalorimeter()
223 {
224  // Cleanup old geometry
225 
226  if (fPhysiWorld)
227  {
232  }
233 
234  // complete the Calor parameters definition and Print
235 
236  ComputeCalorParameters();
238 
239  // World
240 
241  fSolidWorld = new G4Tubs("World", // its name
242  0.,fWorldSizeR,fWorldSizeZ/2.,0.,twopi);// its size
243 
244  fLogicWorld = new G4LogicalVolume(fSolidWorld, // its solid
245  fWorldMaterial, // its material
246  "World"); // its name
247 
248  fPhysiWorld = new G4PVPlacement(0, // no rotation
249  G4ThreeVector(), // at (0,0,0)
250  "World", // its name
251  fLogicWorld, // its logical volume
252  0, // its mother volume
253  false, // no boolean op.
254  0); // copy number
255  // Absorber
256 
257  fSolidAbsorber = new G4Tubs("Absorber", 1.0*mm,
258  fAbsorberRadius,
259  fAbsorberThickness/2.,
260  0.0,twopi);
261 
262  fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber,
263  fAbsorberMaterial,
264  "Absorber");
265 
266  fPhysiAbsorber = new G4PVPlacement(0,
267  G4ThreeVector(0.,0.,fZAbsorber),
268  "Absorber",
269  fLogicAbsorber,
270  fPhysiWorld,
271  false,
272  0);
273 
274  return fPhysiWorld;
275 }
276 
277 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
278 
280 {
281  G4cout << "\n The WORLD is made of "
282  << fWorldSizeZ/mm << "mm of " << fWorldMaterial->GetName();
283  G4cout << ", the transverse size (R) of the world is "
284  << fWorldSizeR/mm << " mm. " << G4endl;
285  G4cout << " The ABSORBER is made of "
286  << fAbsorberThickness/mm << "mm of " << fAbsorberMaterial->GetName();
287  G4cout << ", the transverse size (R) is " << fAbsorberRadius/mm
288  << " mm. " << G4endl;
289  G4cout << " Z position of the (middle of the) absorber "
290  << fZAbsorber/mm << " mm." << G4endl;
291  G4cout << G4endl;
292 }
293 
294 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
295 
297 {
298  // get the pointer to the material table
299  const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
300 
301  // search the material by its name
303  for (size_t j=0 ; j<theMaterialTable->size() ; j++)
304  { material = (*theMaterialTable)[j];
305  if (material->GetName() == materialChoice)
306  {
307  fAbsorberMaterial = material;
308  fLogicAbsorber->SetMaterial(material);
310  }
311  }
312 }
313 
314 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
315 
317 {
318  // get the pointer to the material table
319  const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
320 
321  // search the material by its name
323  for (size_t j=0 ; j<theMaterialTable->size() ; j++)
324  { material = (*theMaterialTable)[j];
325  if(material->GetName() == materialChoice)
326  {
327  fWorldMaterial = material;
328  fLogicWorld->SetMaterial(material);
330  }
331  }
332 }
333 
334 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
335 
337 {
338  // change Absorber thickness and recompute the calorimeter parameters
339  fAbsorberThickness = val;
340  ComputeCalorParameters();
342 }
343 
344 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
345 
347 {
348  // change the transverse size and recompute the calorimeter parameters
349  fAbsorberRadius = val;
350  ComputeCalorParameters();
352 }
353 
354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
355 
357 {
358  fWorldSizeZ = val;
359  ComputeCalorParameters();
361 }
362 
363 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
364 
366 {
367  fWorldSizeR = val;
368  ComputeCalorParameters();
370 }
371 
372 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
373 
375 {
376  fZAbsorber = val;
377  ComputeCalorParameters();
379 }
380 
381 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
382 
384 {
385  // Sensitive Detectors: Absorber
386 
387  if (!fCalorimeterSD.Get()) {
388  F01CalorimeterSD* calorimeterSD = new F01CalorimeterSD("CalorSD",this);
389  fCalorimeterSD.Put(calorimeterSD);
390  }
391  SetSensitiveDetector(fLogicAbsorber, fCalorimeterSD.Get());
392 
393  // Construct the field creator - this will register the field it creates
394  if (!fEmFieldSetup.Get()) {
395  F01FieldSetup* fieldSetup
396  = new F01FieldSetup(G4ThreeVector( 3.3*tesla, 0.0, 0.0 ) );
397  G4AutoDelete::Register(fieldSetup); // Kernel will delete the F01FieldSetup
398  fEmFieldSetup.Put(fieldSetup);
399  }
400 }
401 
402 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4String symbol
Definition: TRTMaterials.hh:40
CLHEP::Hep3Vector G4ThreeVector
void AddMaterial(G4Material *material, G4double fraction)
Definition: G4Material.cc:450
G4double z
Definition: TRTMaterials.hh:39
const G4String & GetName() const
Definition: G4Material.hh:176
value_type & Get() const
Definition: G4Cache.hh:253
Definition: G4Tubs.hh:84
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:564
G4Element * elC
Definition: TRTMaterials.hh:48
std::vector< G4Material * > G4MaterialTable
static void Clean()
Definition: G4SolidStore.cc:79
const XML_Char * name
float STP_Temperature
Definition: hepunit.py:302
Definition of the F01DetectorMessenger class.
int G4int
Definition: G4Types.hh:78
G4Element * elN
Definition: TRTMaterials.hh:44
G4Element * elH
Definition: TRTMaterials.hh:50
static G4PhysicalVolumeStore * GetInstance()
Definition of the F01DetectorConstruction class.
string material
Definition: eplot.py:19
G4double density
Definition: TRTMaterials.hh:39
function g(Y1, Y2, PT2)
Definition: hijing1.383.f:5205
void Register(T *inst)
Definition: G4AutoDelete.hh:65
G4GLOB_DLL std::ostream G4cout
Definition of the F01FieldSetup class.
G4Element * elO
Definition: TRTMaterials.hh:46
void PhysicsHasBeenModified()
static G4LogicalVolumeStore * GetInstance()
static G4SolidStore * GetInstance()
static G4GeometryManager * GetInstance()
virtual G4VPhysicalVolume * Construct()
Definition of the F01CalorimeterSD class.
void SetSensitiveDetector(const G4String &logVolName, G4VSensitiveDetector *aSD, G4bool multi=false)
void ReinitializeGeometry(G4bool destroyFirst=false, G4bool prop=true)
static G4RunManager * GetRunManager()
Definition: G4RunManager.cc:74
#define G4endl
Definition: G4ios.hh:61
void OpenGeometry(G4VPhysicalVolume *vol=0)
void AddElement(G4Element *element, G4int nAtoms)
Definition: G4Material.cc:345
double G4double
Definition: G4Types.hh:76
void SetMaterial(G4Material *pMaterial)
void Put(const value_type &val) const
Definition: G4Cache.hh:257
G4int nel
Definition: TRTMaterials.hh:41
int STP_Pressure
Definition: hepunit.py:303