#include <G4UrbanMscModel90.hh>
Inheritance diagram for G4UrbanMscModel90:
Public Member Functions | |
G4UrbanMscModel90 (const G4String &nam="UrbanMsc90") | |
virtual | ~G4UrbanMscModel90 () |
void | Initialise (const G4ParticleDefinition *, const G4DataVector &) |
void | StartTracking (G4Track *) |
G4double | ComputeCrossSectionPerAtom (const G4ParticleDefinition *particle, G4double KineticEnergy, G4double AtomicNumber, G4double AtomicWeight=0., G4double cut=0., G4double emax=DBL_MAX) |
void | SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double, G4double) |
G4ThreeVector & | SampleScattering (const G4ThreeVector &, G4double safety) |
G4double | ComputeTruePathLengthLimit (const G4Track &track, G4double ¤tMinimalStep) |
G4double | ComputeGeomPathLength (G4double truePathLength) |
G4double | ComputeTrueStepLength (G4double geomStepLength) |
G4double | ComputeTheta0 (G4double truePathLength, G4double KineticEnergy) |
Definition at line 66 of file G4UrbanMscModel90.hh.
G4UrbanMscModel90::G4UrbanMscModel90 | ( | const G4String & | nam = "UrbanMsc90" |
) |
Definition at line 70 of file G4UrbanMscModel90.cc.
References G4cout, G4endl, G4LossTableManager::Instance(), and G4VMscModel::skin.
00071 : G4VMscModel(nam) 00072 { 00073 taubig = 8.0; 00074 tausmall = 1.e-20; 00075 taulim = 1.e-6; 00076 currentTau = taulim; 00077 tlimitminfix = 1.e-6*mm; 00078 stepmin = tlimitminfix; 00079 smallstep = 1.e10; 00080 currentRange = 0. ; 00081 frscaling2 = 0.25; 00082 frscaling1 = 1.-frscaling2; 00083 tlimit = 1.e10*mm; 00084 tlimitmin = 10.*tlimitminfix; 00085 nstepmax = 25.; 00086 geombig = 1.e50*mm; 00087 geommin = 1.e-3*mm; 00088 geomlimit = geombig; 00089 presafety = 0.*mm; 00090 Zeff = 1.; 00091 particle = 0; 00092 theManager = G4LossTableManager::Instance(); 00093 firstStep = true; 00094 inside = false; 00095 insideskin = false; 00096 00097 skindepth = skin*stepmin; 00098 00099 mass = proton_mass_c2; 00100 charge = 1.0; 00101 currentKinEnergy = currentRange = currentRadLength = masslimite = masslimitmu 00102 = lambda0 = lambdaeff = tPathLength = zPathLength = par1 = par2 = par3 = 0; 00103 00104 currentMaterialIndex = -1; 00105 fParticleChange = 0; 00106 couple = 0; 00107 G4cout << "### G4UrbanMscModel90 is obsolete and will be removed for " 00108 << "the next Geant4 version" << G4endl; 00109 }
G4UrbanMscModel90::~G4UrbanMscModel90 | ( | ) | [virtual] |
G4double G4UrbanMscModel90::ComputeCrossSectionPerAtom | ( | const G4ParticleDefinition * | particle, | |
G4double | KineticEnergy, | |||
G4double | AtomicNumber, | |||
G4double | AtomicWeight = 0. , |
|||
G4double | cut = 0. , |
|||
G4double | emax = DBL_MAX | |||
) | [virtual] |
Reimplemented from G4VEmModel.
Definition at line 139 of file G4UrbanMscModel90.cc.
00144 { 00145 const G4double sigmafactor = twopi*classic_electr_radius*classic_electr_radius; 00146 const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2* 00147 Bohr_radius*Bohr_radius/(hbarc*hbarc); 00148 const G4double epsmin = 1.e-4 , epsmax = 1.e10; 00149 00150 const G4double Zdat[15] = { 4., 6., 13., 20., 26., 29., 32., 38., 47., 00151 50., 56., 64., 74., 79., 82. }; 00152 00153 const G4double Tdat[22] = { 100*eV, 200*eV, 400*eV, 700*eV, 00154 1*keV, 2*keV, 4*keV, 7*keV, 00155 10*keV, 20*keV, 40*keV, 70*keV, 00156 100*keV, 200*keV, 400*keV, 700*keV, 00157 1*MeV, 2*MeV, 4*MeV, 7*MeV, 00158 10*MeV, 20*MeV}; 00159 00160 // corr. factors for e-/e+ lambda for T <= Tlim 00161 G4double celectron[15][22] = 00162 {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054, 00163 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111, 00164 1.112,1.108,1.100,1.093,1.089,1.087 }, 00165 {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051, 00166 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108, 00167 1.109,1.105,1.097,1.090,1.086,1.082 }, 00168 {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156, 00169 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132, 00170 1.131,1.124,1.113,1.104,1.099,1.098 }, 00171 {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236, 00172 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113, 00173 1.112,1.105,1.096,1.089,1.085,1.098 }, 00174 {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265, 00175 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073, 00176 1.073,1.070,1.064,1.059,1.056,1.056 }, 00177 {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330, 00178 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074, 00179 1.074,1.070,1.063,1.059,1.056,1.052 }, 00180 {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386, 00181 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069, 00182 1.068,1.064,1.059,1.054,1.051,1.050 }, 00183 {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439, 00184 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039, 00185 1.039,1.037,1.034,1.031,1.030,1.036 }, 00186 {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631, 00187 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033, 00188 1.031,1.028,1.024,1.022,1.021,1.024 }, 00189 {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669, 00190 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022, 00191 1.020,1.017,1.015,1.013,1.013,1.020 }, 00192 {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720, 00193 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997, 00194 0.995,0.993,0.993,0.993,0.993,1.011 }, 00195 {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855, 00196 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976, 00197 0.974,0.972,0.973,0.974,0.975,0.987 }, 00198 {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059, 00199 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954, 00200 0.950,0.947,0.949,0.952,0.954,0.963 }, 00201 {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182, 00202 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947, 00203 0.941,0.938,0.940,0.944,0.946,0.954 }, 00204 {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239, 00205 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939, 00206 0.933,0.930,0.933,0.936,0.939,0.949 }}; 00207 00208 G4double cpositron[15][22] = { 00209 {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110, 00210 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131, 00211 1.131,1.126,1.117,1.108,1.103,1.100 }, 00212 {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145, 00213 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137, 00214 1.138,1.132,1.122,1.113,1.108,1.102 }, 00215 {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451, 00216 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205, 00217 1.203,1.190,1.173,1.159,1.151,1.145 }, 00218 {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715, 00219 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228, 00220 1.225,1.210,1.191,1.175,1.166,1.174 }, 00221 {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820, 00222 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219, 00223 1.217,1.203,1.184,1.169,1.160,1.151 }, 00224 {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996, 00225 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241, 00226 1.237,1.222,1.201,1.184,1.174,1.159 }, 00227 {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155, 00228 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256, 00229 1.252,1.234,1.212,1.194,1.183,1.170 }, 00230 {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348, 00231 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258, 00232 1.254,1.237,1.214,1.195,1.185,1.179 }, 00233 {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808, 00234 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320, 00235 1.312,1.288,1.258,1.235,1.221,1.205 }, 00236 {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917, 00237 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327, 00238 1.320,1.294,1.264,1.240,1.226,1.214 }, 00239 {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066, 00240 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336, 00241 1.328,1.302,1.270,1.245,1.231,1.233 }, 00242 {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498, 00243 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371, 00244 1.361,1.330,1.294,1.267,1.251,1.239 }, 00245 {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155, 00246 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423, 00247 1.409,1.372,1.330,1.298,1.280,1.258 }, 00248 {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407, 00249 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459, 00250 1.442,1.400,1.354,1.319,1.299,1.272 }, 00251 {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542, 00252 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474, 00253 1.456,1.412,1.364,1.328,1.307,1.282 }}; 00254 00255 //data/corrections for T > Tlim 00256 G4double Tlim = 10.*MeV; 00257 G4double beta2lim = Tlim*(Tlim+2.*electron_mass_c2)/ 00258 ((Tlim+electron_mass_c2)*(Tlim+electron_mass_c2)); 00259 G4double bg2lim = Tlim*(Tlim+2.*electron_mass_c2)/ 00260 (electron_mass_c2*electron_mass_c2); 00261 00262 G4double sig0[15] = {0.2672*barn, 0.5922*barn, 2.653*barn, 6.235*barn, 00263 11.69*barn , 13.24*barn , 16.12*barn, 23.00*barn , 00264 35.13*barn , 39.95*barn , 50.85*barn, 67.19*barn , 00265 91.15*barn , 104.4*barn , 113.1*barn}; 00266 00267 G4double hecorr[15] = {120.70, 117.50, 105.00, 92.92, 79.23, 74.510, 68.29, 00268 57.39, 41.97, 36.14, 24.53, 10.21, -7.855, -16.84, 00269 -22.30}; 00270 00271 G4double sigma; 00272 SetParticle(part); 00273 00274 G4double Z23 = 2.*log(AtomicNumber)/3.; Z23 = exp(Z23); 00275 00276 // correction if particle .ne. e-/e+ 00277 // compute equivalent kinetic energy 00278 // lambda depends on p*beta .... 00279 00280 G4double eKineticEnergy = KineticEnergy; 00281 00282 if(mass > electron_mass_c2) 00283 { 00284 G4double TAU = KineticEnergy/mass ; 00285 G4double c = mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ; 00286 G4double w = c-2. ; 00287 G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ; 00288 eKineticEnergy = electron_mass_c2*tau ; 00289 } 00290 00291 G4double ChargeSquare = charge*charge; 00292 00293 G4double eTotalEnergy = eKineticEnergy + electron_mass_c2 ; 00294 G4double beta2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2) 00295 /(eTotalEnergy*eTotalEnergy); 00296 G4double bg2 = eKineticEnergy*(eTotalEnergy+electron_mass_c2) 00297 /(electron_mass_c2*electron_mass_c2); 00298 00299 G4double eps = epsfactor*bg2/Z23; 00300 00301 if (eps<epsmin) sigma = 2.*eps*eps; 00302 else if(eps<epsmax) sigma = log(1.+2.*eps)-2.*eps/(1.+2.*eps); 00303 else sigma = log(2.*eps)-1.+1./eps; 00304 00305 sigma *= ChargeSquare*AtomicNumber*AtomicNumber/(beta2*bg2); 00306 00307 // interpolate in AtomicNumber and beta2 00308 G4double c1,c2,cc1,cc2,corr; 00309 00310 // get bin number in Z 00311 G4int iZ = 14; 00312 while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1; 00313 if (iZ==14) iZ = 13; 00314 if (iZ==-1) iZ = 0 ; 00315 00316 G4double Z1 = Zdat[iZ]; 00317 G4double Z2 = Zdat[iZ+1]; 00318 G4double ratZ = (AtomicNumber-Z1)*(AtomicNumber+Z1)/ 00319 ((Z2-Z1)*(Z2+Z1)); 00320 00321 if(eKineticEnergy <= Tlim) 00322 { 00323 // get bin number in T (beta2) 00324 G4int iT = 21; 00325 while ((iT>=0)&&(Tdat[iT]>=eKineticEnergy)) iT -= 1; 00326 if(iT==21) iT = 20; 00327 if(iT==-1) iT = 0 ; 00328 00329 // calculate betasquare values 00330 G4double T = Tdat[iT], E = T + electron_mass_c2; 00331 G4double b2small = T*(E+electron_mass_c2)/(E*E); 00332 00333 T = Tdat[iT+1]; E = T + electron_mass_c2; 00334 G4double b2big = T*(E+electron_mass_c2)/(E*E); 00335 G4double ratb2 = (beta2-b2small)/(b2big-b2small); 00336 00337 if (charge < 0.) 00338 { 00339 c1 = celectron[iZ][iT]; 00340 c2 = celectron[iZ+1][iT]; 00341 cc1 = c1+ratZ*(c2-c1); 00342 00343 c1 = celectron[iZ][iT+1]; 00344 c2 = celectron[iZ+1][iT+1]; 00345 cc2 = c1+ratZ*(c2-c1); 00346 00347 corr = cc1+ratb2*(cc2-cc1); 00348 00349 sigma *= sigmafactor/corr; 00350 } 00351 else 00352 { 00353 c1 = cpositron[iZ][iT]; 00354 c2 = cpositron[iZ+1][iT]; 00355 cc1 = c1+ratZ*(c2-c1); 00356 00357 c1 = cpositron[iZ][iT+1]; 00358 c2 = cpositron[iZ+1][iT+1]; 00359 cc2 = c1+ratZ*(c2-c1); 00360 00361 corr = cc1+ratb2*(cc2-cc1); 00362 00363 sigma *= sigmafactor/corr; 00364 } 00365 } 00366 else 00367 { 00368 c1 = bg2lim*sig0[iZ]*(1.+hecorr[iZ]*(beta2-beta2lim))/bg2; 00369 c2 = bg2lim*sig0[iZ+1]*(1.+hecorr[iZ+1]*(beta2-beta2lim))/bg2; 00370 if((AtomicNumber >= Z1) && (AtomicNumber <= Z2)) 00371 sigma = c1+ratZ*(c2-c1) ; 00372 else if(AtomicNumber < Z1) 00373 sigma = AtomicNumber*AtomicNumber*c1/(Z1*Z1); 00374 else if(AtomicNumber > Z2) 00375 sigma = AtomicNumber*AtomicNumber*c2/(Z2*Z2); 00376 } 00377 return sigma; 00378 00379 }
Reimplemented from G4VMscModel.
Definition at line 588 of file G4UrbanMscModel90.cc.
References G4VMscModel::dtrl, G4UniformRand, G4VMscModel::GetEnergy(), G4VMscModel::GetTransportMeanFreePath(), and G4VMscModel::samplez.
00589 { 00590 firstStep = false; 00591 lambdaeff = lambda0; 00592 par1 = -1. ; 00593 par2 = par3 = 0. ; 00594 00595 // do the true -> geom transformation 00596 zPathLength = tPathLength; 00597 00598 // z = t for very small tPathLength 00599 if(tPathLength < tlimitminfix) return zPathLength; 00600 00601 // this correction needed to run MSC with eIoni and eBrem inactivated 00602 // and makes no harm for a normal run 00603 if(tPathLength > currentRange) 00604 tPathLength = currentRange ; 00605 00606 G4double tau = tPathLength/lambda0 ; 00607 00608 if ((tau <= tausmall) || insideskin) { 00609 zPathLength = tPathLength; 00610 if(zPathLength > lambda0) zPathLength = lambda0; 00611 return zPathLength; 00612 } 00613 00614 G4double zmean = tPathLength; 00615 if (tPathLength < currentRange*dtrl) { 00616 if(tau < taulim) zmean = tPathLength*(1.-0.5*tau) ; 00617 else zmean = lambda0*(1.-exp(-tau)); 00618 } else if(currentKinEnergy < mass || tPathLength == currentRange) { 00619 par1 = 1./currentRange ; 00620 par2 = 1./(par1*lambda0) ; 00621 par3 = 1.+par2 ; 00622 if(tPathLength < currentRange) 00623 zmean = (1.-exp(par3*log(1.-tPathLength/currentRange)))/(par1*par3) ; 00624 else 00625 zmean = 1./(par1*par3) ; 00626 } else { 00627 G4double T1 = GetEnergy(particle,currentRange-tPathLength,couple); 00628 G4double lambda1 = GetTransportMeanFreePath(particle,T1); 00629 00630 par1 = (lambda0-lambda1)/(lambda0*tPathLength) ; 00631 par2 = 1./(par1*lambda0) ; 00632 par3 = 1.+par2 ; 00633 zmean = (1.-exp(par3*log(lambda1/lambda0)))/(par1*par3) ; 00634 } 00635 00636 zPathLength = zmean ; 00637 00638 // sample z 00639 if(samplez) 00640 { 00641 const G4double ztmax = 0.99, onethird = 1./3. ; 00642 G4double zt = zmean/tPathLength ; 00643 00644 if (tPathLength > stepmin && zt < ztmax) 00645 { 00646 G4double u,cz1; 00647 if(zt >= onethird) 00648 { 00649 G4double cz = 0.5*(3.*zt-1.)/(1.-zt) ; 00650 cz1 = 1.+cz ; 00651 G4double u0 = cz/cz1 ; 00652 G4double grej ; 00653 do { 00654 u = exp(log(G4UniformRand())/cz1) ; 00655 grej = exp(cz*log(u/u0))*(1.-u)/(1.-u0) ; 00656 } while (grej < G4UniformRand()) ; 00657 } 00658 else 00659 { 00660 cz1 = 1./zt-1.; 00661 u = 1.-exp(log(G4UniformRand())/cz1) ; 00662 } 00663 zPathLength = tPathLength*u ; 00664 } 00665 } 00666 00667 if(zPathLength > lambda0) zPathLength = lambda0; 00668 00669 return zPathLength; 00670 }
Definition at line 705 of file G4UrbanMscModel90.cc.
00707 { 00708 // for all particles take the width of the central part 00709 // from a parametrization similar to the Highland formula 00710 // ( Highland formula: Particle Physics Booklet, July 2002, eq. 26.10) 00711 const G4double c_highland = 13.6*MeV ; 00712 G4double betacp = sqrt(currentKinEnergy*(currentKinEnergy+2.*mass)* 00713 KineticEnergy*(KineticEnergy+2.*mass)/ 00714 ((currentKinEnergy+mass)*(KineticEnergy+mass))); 00715 G4double y = trueStepLength/currentRadLength; 00716 G4double theta0 = c_highland*std::abs(charge)*sqrt(y)/betacp; 00717 y = log(y); 00718 theta0 *= sqrt(1.+y*(0.105+0.0035*y)); 00719 00720 //correction for small Zeff (based on high energy 00721 // proton scattering data) 00722 // see G.Shen at al. Phys.Rev.D20(1979) p.1584 00723 theta0 *= 1.-0.24/(Zeff*(Zeff+1.)); 00724 00725 return theta0; 00726 00727 }
G4double G4UrbanMscModel90::ComputeTruePathLengthLimit | ( | const G4Track & | track, | |
G4double & | currentMinimalStep | |||
) | [virtual] |
Reimplemented from G4VMscModel.
Definition at line 394 of file G4UrbanMscModel90.cc.
References G4VMscModel::ComputeGeomLimit(), G4VMscModel::ComputeSafety(), G4VMscModel::ConvertTrueToGeom(), G4VMscModel::facgeom, G4VMscModel::facrange, G4VMscModel::facsafety, fGeomBoundary, fUseDistanceToBoundary, fUseSafety, G4Track::GetDynamicParticle(), G4MaterialCutsCouple::GetIndex(), G4DynamicParticle::GetKineticEnergy(), G4Track::GetMaterialCutsCouple(), G4Step::GetPreStepPoint(), G4VMscModel::GetRange(), G4Track::GetStep(), G4VMscModel::GetTransportMeanFreePath(), G4VMscModel::lambdalimit, G4VEmModel::SetCurrentCouple(), G4VMscModel::skin, G4InuclParticleNames::sp, and G4VMscModel::steppingAlgorithm.
00397 { 00398 tPathLength = currentMinimalStep; 00399 const G4DynamicParticle* dp = track.GetDynamicParticle(); 00400 G4StepPoint* sp = track.GetStep()->GetPreStepPoint(); 00401 G4StepStatus stepStatus = sp->GetStepStatus(); 00402 couple = track.GetMaterialCutsCouple(); 00403 SetCurrentCouple(couple); 00404 currentMaterialIndex = couple->GetIndex(); 00405 currentKinEnergy = dp->GetKineticEnergy(); 00406 currentRange = GetRange(particle,currentKinEnergy,couple); 00407 lambda0 = GetTransportMeanFreePath(particle,currentKinEnergy); 00408 00409 // stop here if small range particle 00410 if(inside || tPathLength < tlimitminfix) { 00411 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00412 } 00413 00414 if(tPathLength > currentRange) { tPathLength = currentRange; } 00415 00416 presafety = sp->GetSafety(); 00417 /* 00418 G4cout << "G4UrbanMscModel90::ComputeTruePathLengthLimit tPathLength= " 00419 <<tPathLength<<" safety= " << presafety 00420 << " range= " <<currentRange<<G4endl; 00421 */ 00422 // far from geometry boundary 00423 if(currentRange < presafety) 00424 { 00425 inside = true; 00426 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00427 } 00428 00429 // standard version 00430 // 00431 if (steppingAlgorithm == fUseDistanceToBoundary) 00432 { 00433 //compute geomlimit and presafety 00434 geomlimit = ComputeGeomLimit(track, presafety, currentRange); 00435 00436 // is far from boundary 00437 if(currentRange <= presafety) 00438 { 00439 inside = true; 00440 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00441 } 00442 00443 smallstep += 1.; 00444 insideskin = false; 00445 00446 if(firstStep || stepStatus == fGeomBoundary) 00447 { 00448 00449 if(firstStep) smallstep = 1.e10; 00450 else smallstep = 1.; 00451 00452 // facrange scaling in lambda 00453 // not so strong step restriction above lambdalimit 00454 G4double facr = facrange; 00455 if(lambda0 > lambdalimit) 00456 facr *= frscaling1+frscaling2*lambda0/lambdalimit; 00457 00458 // constraint from the physics 00459 if (currentRange > lambda0) tlimit = facr*currentRange; 00460 else tlimit = facr*lambda0; 00461 00462 // constraint from the geometry (if tlimit above is too big) 00463 G4double tgeom = geombig; 00464 if(geomlimit > geommin) 00465 { 00466 if(stepStatus == fGeomBoundary) 00467 tgeom = geomlimit/facgeom; 00468 else 00469 tgeom = 2.*geomlimit/facgeom; 00470 } 00471 00472 //define stepmin here (it depends on lambda!) 00473 //rough estimation of lambda_elastic/lambda_transport 00474 G4double rat = currentKinEnergy/MeV ; 00475 rat = 1.e-3/(rat*(10.+rat)) ; 00476 //stepmin ~ lambda_elastic 00477 stepmin = rat*lambda0; 00478 skindepth = skin*stepmin; 00479 00480 //define tlimitmin 00481 tlimitmin = lambda0/nstepmax; 00482 if(tlimitmin < stepmin) tlimitmin = 1.01*stepmin; 00483 if(tlimitmin < tlimitminfix) tlimitmin = tlimitminfix; 00484 00485 //lower limit for tlimit 00486 if(tlimit < tlimitmin) tlimit = tlimitmin; 00487 00488 //check against geometry limit 00489 if(tlimit > tgeom) tlimit = tgeom; 00490 } 00491 00492 //if track starts far from boundaries increase tlimit! 00493 if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ; 00494 00495 // G4cout << "tgeom= " << tgeom << " geomlimit= " << geomlimit 00496 // << " tlimit= " << tlimit << " presafety= " << presafety << G4endl; 00497 00498 // shortcut 00499 if((tPathLength < tlimit) && (tPathLength < presafety)) 00500 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00501 00502 G4double tnow = tlimit; 00503 // optimization ... 00504 if(geomlimit < geombig) tnow = max(tlimit,facsafety*geomlimit); 00505 00506 // step reduction near to boundary 00507 if(smallstep < skin) 00508 { 00509 tnow = stepmin; 00510 insideskin = true; 00511 } 00512 else if(geomlimit < geombig) 00513 { 00514 if(geomlimit > skindepth) 00515 { 00516 if(tnow > geomlimit-0.999*skindepth) 00517 tnow = geomlimit-0.999*skindepth; 00518 } 00519 else 00520 { 00521 insideskin = true; 00522 if(tnow > stepmin) tnow = stepmin; 00523 } 00524 } 00525 00526 if(tnow < stepmin) tnow = stepmin; 00527 00528 if(tPathLength > tnow) tPathLength = tnow ; 00529 } 00530 // for 'normal' simulation with or without magnetic field 00531 // there no small step/single scattering at boundaries 00532 else if(steppingAlgorithm == fUseSafety) 00533 { 00534 // compute presafety again if presafety <= 0 and no boundary 00535 // i.e. when it is needed for optimization purposes 00536 if((stepStatus != fGeomBoundary) && (presafety < tlimitminfix)) 00537 presafety = ComputeSafety(sp->GetPosition(),tPathLength); 00538 00539 // is far from boundary 00540 if(currentRange < presafety) 00541 { 00542 inside = true; 00543 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00544 } 00545 00546 if(firstStep || stepStatus == fGeomBoundary) 00547 { 00548 // facrange scaling in lambda 00549 // not so strong step restriction above lambdalimit 00550 G4double facr = facrange; 00551 if(lambda0 > lambdalimit) 00552 facr *= frscaling1+frscaling2*lambda0/lambdalimit; 00553 00554 // constraint from the physics 00555 if (currentRange > lambda0) tlimit = facr*currentRange; 00556 else tlimit = facr*lambda0; 00557 00558 //lower limit for tlimit 00559 tlimitmin = std::max(tlimitminfix,lambda0/nstepmax); 00560 if(tlimit < tlimitmin) tlimit = tlimitmin; 00561 } 00562 00563 //if track starts far from boundaries increase tlimit! 00564 if(tlimit < facsafety*presafety) tlimit = facsafety*presafety ; 00565 00566 if(tPathLength > tlimit) tPathLength = tlimit; 00567 } 00568 00569 // version similar to 7.1 (needed for some experiments) 00570 else 00571 { 00572 if (stepStatus == fGeomBoundary) 00573 { 00574 if (currentRange > lambda0) tlimit = facrange*currentRange; 00575 else tlimit = facrange*lambda0; 00576 00577 if(tlimit < tlimitmin) tlimit = tlimitmin; 00578 if(tPathLength > tlimit) tPathLength = tlimit; 00579 } 00580 } 00581 // G4cout << "tPathLength= " << tPathLength << " geomlimit= " << geomlimit 00582 // << " currentMinimalStep= " << currentMinimalStep << G4endl; 00583 return ConvertTrueToGeom(tPathLength, currentMinimalStep); 00584 }
Reimplemented from G4VMscModel.
Definition at line 674 of file G4UrbanMscModel90.cc.
00675 { 00676 // step defined other than transportation 00677 if(geomStepLength == zPathLength && tPathLength <= currentRange) 00678 { return tPathLength; } 00679 00680 // t = z for very small step 00681 zPathLength = geomStepLength; 00682 tPathLength = geomStepLength; 00683 if(geomStepLength < tlimitminfix) return tPathLength; 00684 00685 // recalculation 00686 if((geomStepLength > lambda0*tausmall) && !insideskin) 00687 { 00688 if(par1 < 0.) 00689 tPathLength = -lambda0*log(1.-geomStepLength/lambda0) ; 00690 else 00691 { 00692 if(par1*par3*geomStepLength < 1.) 00693 tPathLength = (1.-exp(log(1.-par1*par3*geomStepLength)/par3))/par1 ; 00694 else 00695 tPathLength = currentRange; 00696 } 00697 } 00698 if(tPathLength < geomStepLength) tPathLength = geomStepLength; 00699 00700 return tPathLength; 00701 }
void G4UrbanMscModel90::Initialise | ( | const G4ParticleDefinition * | , | |
const G4DataVector & | ||||
) | [virtual] |
Implements G4VEmModel.
Definition at line 118 of file G4UrbanMscModel90.cc.
References G4cout, G4endl, G4VMscModel::GetParticleChangeForMSC(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), and G4VMscModel::skin.
00120 { 00121 skindepth = skin*stepmin; 00122 00123 // set values of some data members 00124 SetParticle(p); 00125 00126 if(p->GetPDGMass() < MeV) { 00127 G4cout << "### WARNING: G4UrbanMscModel90 model is used for " 00128 << p->GetParticleName() << " !!! " << G4endl; 00129 G4cout << "### This model should be used only for heavy particles" 00130 << G4endl; 00131 } 00132 00133 00134 fParticleChange = GetParticleChangeForMSC(p); 00135 }
G4ThreeVector & G4UrbanMscModel90::SampleScattering | ( | const G4ThreeVector & | , | |
G4double | safety | |||
) | [virtual] |
Reimplemented from G4VMscModel.
Definition at line 732 of file G4UrbanMscModel90.cc.
References G4VEmModel::CurrentCouple(), G4VMscModel::dtrl, G4VMscModel::fDisplacement, G4endl, G4Exception(), G4UniformRand, G4VMscModel::GetDEDX(), G4VMscModel::GetEnergy(), G4MaterialCutsCouple::GetMaterial(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), JustWarning, G4VMscModel::latDisplasment, and G4ParticleChangeForMSC::ProposeMomentumDirection().
00734 { 00735 fDisplacement.set(0.0,0.0,0.0); 00736 G4double kineticEnergy = currentKinEnergy; 00737 if (tPathLength > currentRange*dtrl) { 00738 kineticEnergy = GetEnergy(particle,currentRange-tPathLength,couple); 00739 } else { 00740 kineticEnergy -= tPathLength*GetDEDX(particle,currentKinEnergy,couple); 00741 } 00742 if((kineticEnergy <= eV) || (tPathLength <= tlimitminfix) || 00743 (tPathLength/tausmall < lambda0) ) { return fDisplacement; } 00744 00745 G4double cth = SampleCosineTheta(tPathLength,kineticEnergy); 00746 // protection against 'bad' cth values 00747 if(std::fabs(cth) > 1.) { return fDisplacement; } 00748 00749 const G4double checkEnergy = GeV; 00750 if(kineticEnergy > checkEnergy && cth < 0.0 00751 && tPathLength < taulim*lambda0) { 00752 G4ExceptionDescription ed; 00753 ed << particle->GetParticleName() 00754 << " E(MeV)= " << kineticEnergy/MeV 00755 << " Step(mm)= " << tPathLength/mm 00756 << " in " << CurrentCouple()->GetMaterial()->GetName() 00757 << " CosTheta= " << cth 00758 << " is too big - the angle is set to zero" << G4endl; 00759 G4Exception("G4UrbanMscModel90::SampleScattering","em0004",JustWarning, 00760 ed,""); 00761 return fDisplacement; 00762 } 00763 00764 G4double sth = sqrt((1.0 - cth)*(1.0 + cth)); 00765 G4double phi = twopi*G4UniformRand(); 00766 G4double dirx = sth*cos(phi); 00767 G4double diry = sth*sin(phi); 00768 00769 // G4ThreeVector oldDirection = dynParticle->GetMomentumDirection(); 00770 G4ThreeVector newDirection(dirx,diry,cth); 00771 newDirection.rotateUz(oldDirection); 00772 fParticleChange->ProposeMomentumDirection(newDirection); 00773 00774 if (latDisplasment && safety > tlimitminfix) { 00775 00776 G4double r = SampleDisplacement(); 00777 /* 00778 G4cout << "G4UrbanMscModel90::SampleSecondaries: e(MeV)= " << kineticEnergy 00779 << " sinTheta= " << sth << " r(mm)= " << r 00780 << " trueStep(mm)= " << truestep 00781 << " geomStep(mm)= " << zPathLength 00782 << G4endl; 00783 */ 00784 if(r > 0.) 00785 { 00786 G4double latcorr = LatCorrelation(); 00787 if(latcorr > r) latcorr = r; 00788 00789 // sample direction of lateral displacement 00790 // compute it from the lateral correlation 00791 G4double Phi = 0.; 00792 if(std::abs(r*sth) < latcorr) { 00793 Phi = twopi*G4UniformRand(); 00794 } else { 00795 G4double psi = std::acos(latcorr/(r*sth)); 00796 if(G4UniformRand() < 0.5) Phi = phi+psi; 00797 else Phi = phi-psi; 00798 } 00799 00800 dirx = std::cos(Phi); 00801 diry = std::sin(Phi); 00802 00803 fDisplacement.set(r*dirx,r*diry,0.0); 00804 fDisplacement.rotateUz(oldDirection); 00805 } 00806 } 00807 return fDisplacement; 00808 }
void G4UrbanMscModel90::SampleSecondaries | ( | std::vector< G4DynamicParticle * > * | , | |
const G4MaterialCutsCouple * | , | |||
const G4DynamicParticle * | , | |||
G4double | , | |||
G4double | ||||
) | [virtual] |
void G4UrbanMscModel90::StartTracking | ( | G4Track * | ) | [virtual] |
Reimplemented from G4VEmModel.
Definition at line 383 of file G4UrbanMscModel90.cc.
References G4DynamicParticle::GetDefinition(), and G4Track::GetDynamicParticle().
00384 { 00385 SetParticle(track->GetDynamicParticle()->GetDefinition()); 00386 firstStep = true; 00387 inside = false; 00388 insideskin = false; 00389 tlimit = geombig; 00390 }