#include <G4NystromRK4.hh>
Inheritance diagram for G4NystromRK4:
Public Member Functions | |
G4NystromRK4 (G4Mag_EqRhs *EquationMotion, G4double distanceConstField=0.0) | |
~G4NystromRK4 () | |
void | Stepper (const G4double P[], const G4double dPdS[], G4double step, G4double Po[], G4double Err[]) |
virtual void | ComputeRightHandSide (const double P[], double dPdS[]) |
void | SetDistanceForConstantField (G4double length) |
G4double | GetDistanceForConstantField () const |
G4int | IntegratorOrder () const |
G4double | DistChord () const |
Definition at line 51 of file G4NystromRK4.hh.
G4NystromRK4::G4NystromRK4 | ( | G4Mag_EqRhs * | EquationMotion, | |
G4double | distanceConstField = 0.0 | |||
) |
Definition at line 41 of file G4NystromRK4.cc.
00042 : G4MagIntegratorStepper(magEqRhs, 6), // number of variables 00043 m_fEq( magEqRhs ), 00044 m_magdistance( distanceConstField ), 00045 m_cof( 0.0 ), 00046 m_mom( 0.0 ), 00047 m_imom( 0.0 ), 00048 m_cachedMom( false ) 00049 { 00050 m_fldPosition[0] = m_iPoint[0] = m_fPoint[0] = m_mPoint[0] = 9.9999999e+99 ; 00051 m_fldPosition[1] = m_iPoint[1] = m_fPoint[1] = m_mPoint[1] = 9.9999999e+99 ; 00052 m_fldPosition[2] = m_iPoint[2] = m_fPoint[2] = m_mPoint[2] = 9.9999999e+99 ; 00053 m_fldPosition[3] = -9.9999999e+99; 00054 m_lastField[0] = m_lastField[1] = m_lastField[2] = 0.0; 00055 00056 m_magdistance2 = distanceConstField*distanceConstField; 00057 }
G4NystromRK4::~G4NystromRK4 | ( | ) |
void G4NystromRK4::ComputeRightHandSide | ( | const double | P[], | |
double | dPdS[] | |||
) | [virtual] |
Reimplemented from G4MagIntegratorStepper.
Definition at line 196 of file G4NystromRK4.cc.
References G4Mag_EqRhs::FCof().
00197 { 00198 G4double P4vec[4]= { P[0], P[1], P[2], P[7] }; // Time is P[7] 00199 getField(P4vec); 00200 m_mom = std::sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]) ; 00201 m_imom = 1./m_mom ; 00202 m_cof = m_fEq->FCof()*m_imom ; 00203 m_cachedMom = true ; // Caching the value 00204 dPdS[0] = P[3]*m_imom ; // dx /ds 00205 dPdS[1] = P[4]*m_imom ; // dy /ds 00206 dPdS[2] = P[5]*m_imom ; // dz /ds 00207 dPdS[3] = m_cof*(P[4]*m_lastField[2]-P[5]*m_lastField[1]) ; // dPx/ds 00208 dPdS[4] = m_cof*(P[5]*m_lastField[0]-P[3]*m_lastField[2]) ; // dPy/ds 00209 dPdS[5] = m_cof*(P[3]*m_lastField[1]-P[4]*m_lastField[0]) ; // dPz/ds 00210 }
G4double G4NystromRK4::DistChord | ( | ) | const [virtual] |
Implements G4MagIntegratorStepper.
Definition at line 172 of file G4NystromRK4.cc.
00173 { 00174 G4double ax = m_fPoint[0]-m_iPoint[0]; 00175 G4double ay = m_fPoint[1]-m_iPoint[1]; 00176 G4double az = m_fPoint[2]-m_iPoint[2]; 00177 G4double dx = m_mPoint[0]-m_iPoint[0]; 00178 G4double dy = m_mPoint[1]-m_iPoint[1]; 00179 G4double dz = m_mPoint[2]-m_iPoint[2]; 00180 G4double d2 = (ax*ax+ay*ay+az*az) ; 00181 00182 if(d2!=0.) { 00183 G4double ds = (ax*dx+ay*dy+az*dz)/d2; 00184 dx -= (ds*ax) ; 00185 dy -= (ds*ay) ; 00186 dz -= (ds*az) ; 00187 } 00188 return std::sqrt(dx*dx+dy*dy+dz*dz); 00189 }
G4double G4NystromRK4::GetDistanceForConstantField | ( | ) | const [inline] |
G4int G4NystromRK4::IntegratorOrder | ( | ) | const [inline, virtual] |
void G4NystromRK4::SetDistanceForConstantField | ( | G4double | length | ) | [inline] |
void G4NystromRK4::Stepper | ( | const G4double | P[], | |
const G4double | dPdS[], | |||
G4double | step, | |||
G4double | Po[], | |||
G4double | Err[] | |||
) | [virtual] |
Implements G4MagIntegratorStepper.
Definition at line 73 of file G4NystromRK4.cc.
00074 { 00075 G4double R[3] = { P[0], P[1] , P[2]}; 00076 G4double A[3] = {dPdS[0], dPdS[1], dPdS[2]}; 00077 00078 m_iPoint[0]=R[0]; m_iPoint[1]=R[1]; m_iPoint[2]=R[2]; 00079 00080 const G4double one_sixth= 1./6.; 00081 G4double S = Step ; 00082 G4double S5 = .5*Step ; 00083 G4double S4 = .25*Step ; 00084 G4double S6 = Step * one_sixth; // Step / 6.; 00085 00086 00087 // John A added, in order to emulate effect of call to changed/derived RHS 00088 // m_mom = sqrt(P[3]*P[3]+P[4]*P[4]+P[5]*P[5]); 00089 // m_imom = 1./m_mom; 00090 // m_cof = m_fEq->FCof()*m_imom; 00091 00092 // Point 1 00093 // 00094 G4double K1[3] = { m_imom*dPdS[3], m_imom*dPdS[4], m_imom*dPdS[5] }; 00095 00096 // Point2 00097 // 00098 G4double p[4] = {R[0]+S5*(A[0]+S4*K1[0]), 00099 R[1]+S5*(A[1]+S4*K1[1]), 00100 R[2]+S5*(A[2]+S4*K1[2]), 00101 P[7] }; 00102 getField(p); 00103 00104 G4double A2[3] = {A[0]+S5*K1[0],A[1]+S5*K1[1],A[2]+S5*K1[2]}; 00105 G4double K2[3] = {(A2[1]*m_lastField[2]-A2[2]*m_lastField[1])*m_cof, 00106 (A2[2]*m_lastField[0]-A2[0]*m_lastField[2])*m_cof, 00107 (A2[0]*m_lastField[1]-A2[1]*m_lastField[0])*m_cof}; 00108 00109 m_mPoint[0]=p[0]; m_mPoint[1]=p[1]; m_mPoint[2]=p[2]; 00110 00111 // Point 3 with the same magnetic field 00112 // 00113 G4double A3[3] = {A[0]+S5*K2[0],A[1]+S5*K2[1],A[2]+S5*K2[2]}; 00114 G4double K3[3] = {(A3[1]*m_lastField[2]-A3[2]*m_lastField[1])*m_cof, 00115 (A3[2]*m_lastField[0]-A3[0]*m_lastField[2])*m_cof, 00116 (A3[0]*m_lastField[1]-A3[1]*m_lastField[0])*m_cof}; 00117 00118 // Point 4 00119 // 00120 p[0] = R[0]+S*(A[0]+S5*K3[0]); 00121 p[1] = R[1]+S*(A[1]+S5*K3[1]); 00122 p[2] = R[2]+S*(A[2]+S5*K3[2]); 00123 00124 getField(p); 00125 00126 G4double A4[3] = {A[0]+S*K3[0],A[1]+S*K3[1],A[2]+S*K3[2]}; 00127 G4double K4[3] = {(A4[1]*m_lastField[2]-A4[2]*m_lastField[1])*m_cof, 00128 (A4[2]*m_lastField[0]-A4[0]*m_lastField[2])*m_cof, 00129 (A4[0]*m_lastField[1]-A4[1]*m_lastField[0])*m_cof}; 00130 00131 // New position 00132 // 00133 Po[0] = P[0]+S*(A[0]+S6*(K1[0]+K2[0]+K3[0])); 00134 Po[1] = P[1]+S*(A[1]+S6*(K1[1]+K2[1]+K3[1])); 00135 Po[2] = P[2]+S*(A[2]+S6*(K1[2]+K2[2]+K3[2])); 00136 00137 m_fPoint[0]=Po[0]; m_fPoint[1]=Po[1]; m_fPoint[2]=Po[2]; 00138 00139 // New direction 00140 // 00141 Po[3] = A[0]+S6*(K1[0]+K4[0]+2.*(K2[0]+K3[0])); 00142 Po[4] = A[1]+S6*(K1[1]+K4[1]+2.*(K2[1]+K3[1])); 00143 Po[5] = A[2]+S6*(K1[2]+K4[2]+2.*(K2[2]+K3[2])); 00144 00145 // Errors 00146 // 00147 Err[3] = S*std::fabs(K1[0]-K2[0]-K3[0]+K4[0]); 00148 Err[4] = S*std::fabs(K1[1]-K2[1]-K3[1]+K4[1]); 00149 Err[5] = S*std::fabs(K1[2]-K2[2]-K3[2]+K4[2]); 00150 Err[0] = S*Err[3] ; 00151 Err[1] = S*Err[4] ; 00152 Err[2] = S*Err[5] ; 00153 Err[3]*= m_mom ; 00154 Err[4]*= m_mom ; 00155 Err[5]*= m_mom ; 00156 00157 // Normalize momentum 00158 // 00159 G4double normF = m_mom/std::sqrt(Po[3]*Po[3]+Po[4]*Po[4]+Po[5]*Po[5]); 00160 Po [3]*=normF; Po[4]*=normF; Po[5]*=normF; 00161 00162 // Pass Energy, time unchanged -- time is not integrated !! 00163 Po[6]=P[6]; Po[7]=P[7]; 00164 }