G4LEAntiXiZeroInelastic Class Reference

#include <G4LEAntiXiZeroInelastic.hh>

Inheritance diagram for G4LEAntiXiZeroInelastic:

G4InelasticInteraction G4HadronicInteraction

Public Member Functions

 G4LEAntiXiZeroInelastic ()
 ~G4LEAntiXiZeroInelastic ()
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription (std::ostream &outFile) const

Detailed Description

Definition at line 45 of file G4LEAntiXiZeroInelastic.hh.


Constructor & Destructor Documentation

G4LEAntiXiZeroInelastic::G4LEAntiXiZeroInelastic (  )  [inline]

Definition at line 49 of file G4LEAntiXiZeroInelastic.hh.

References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().

00049                               : G4InelasticInteraction("G4LEAntiXiZeroInelastic")
00050     {
00051       SetMinEnergy( 0.0 );
00052       SetMaxEnergy( 25.*CLHEP::GeV );
00053       G4cout << "WARNING: model G4LEAntiXiZeroInelastic is being deprecated and will\n"
00054              << "disappear in Geant4 version 10.0"  << G4endl;
00055     }

G4LEAntiXiZeroInelastic::~G4LEAntiXiZeroInelastic (  )  [inline]

Definition at line 57 of file G4LEAntiXiZeroInelastic.hh.

00057 { }


Member Function Documentation

G4HadFinalState * G4LEAntiXiZeroInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 55 of file G4LEAntiXiZeroInelastic.cc.

References G4InelasticInteraction::CalculateMomenta(), G4Nucleus::Cinema(), G4InelasticInteraction::DoIsotopeCounting(), G4Nucleus::EvaporationEffects(), G4cout, G4endl, G4UniformRand, G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4ReactionProduct::GetKineticEnergy(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4ReactionProduct::GetTotalMomentum(), G4FastVector< Type, N >::Initialize(), G4InelasticInteraction::isotopeProduction, G4InuclParticleNames::pp, G4Nucleus::ReturnTargetParticle(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4ReactionProduct::SetSide(), G4InelasticInteraction::SetUpChange(), G4HadronicInteraction::theParticleChange, and G4HadronicInteraction::verboseLevel.

00057 { 
00058   const G4HadProjectile *originalIncident = &aTrack;
00059 
00060   // create the target particle
00061   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00062     
00063   if (verboseLevel > 1) {
00064     const G4Material *targetMaterial = aTrack.GetMaterial();
00065     G4cout << "G4LEAntiXiZeroInelastic::ApplyYourself called" << G4endl;
00066     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00067     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00068     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00069            << G4endl;
00070   }
00071 
00072   // Fermi motion and evaporation
00073   // As of Geant3, the Fermi energy calculation had not been Done
00074   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00075   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00076   G4ReactionProduct modifiedOriginal;
00077   modifiedOriginal = *originalIncident;
00078     
00079   G4double tkin = targetNucleus.Cinema( ek );
00080   ek += tkin;
00081   modifiedOriginal.SetKineticEnergy( ek*MeV );
00082   G4double et = ek + amas;
00083   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00084   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00085   if (pp > 0.0) {
00086     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00087     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00088   }
00089 
00090   // calculate black track energies
00091   tkin = targetNucleus.EvaporationEffects( ek );
00092   ek -= tkin;
00093   modifiedOriginal.SetKineticEnergy( ek*MeV );
00094   et = ek + amas;
00095   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00096   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00097   if (pp > 0.0) {
00098     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00099     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00100   }
00101   G4ReactionProduct currentParticle = modifiedOriginal;
00102   G4ReactionProduct targetParticle;
00103   targetParticle = *originalTarget;
00104   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00105   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00106   G4bool incidentHasChanged = false;
00107   G4bool targetHasChanged = false;
00108   G4bool quasiElastic = false;
00109   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00110   G4int vecLen = 0;
00111   vec.Initialize(0);
00112     
00113   const G4double cutOff = 0.1;
00114   const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
00115   if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
00116       (G4UniformRand() > anni) )
00117     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00118             incidentHasChanged, targetHasChanged, quasiElastic);
00119     
00120   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00121                    modifiedOriginal, targetNucleus, currentParticle,
00122                    targetParticle, incidentHasChanged, targetHasChanged,
00123                    quasiElastic);
00124     
00125   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00126 
00127   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00128 
00129   delete originalTarget;
00130   return &theParticleChange;
00131 }

void G4LEAntiXiZeroInelastic::ModelDescription ( std::ostream &  outFile  )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 41 of file G4LEAntiXiZeroInelastic.cc.

00042 {
00043   outFile << "G4LEAntiXiZeroInelastic is one of the Low Energy Parameterized\n"
00044           << "(LEP) models used to implement inelastic antiXi0 scattering\n"
00045           << "from nuclei.  It is a re-engineered version of the GHEISHA\n"
00046           << "code of H. Fesefeldt.  It divides the initial collision\n"
00047           << "products into backward- and forward-going clusters which are\n"
00048           << "then decayed into final state hadrons.  The model does not\n"
00049           << "conserve energy on an event-by-event basis.  It may be\n"
00050           << "applied to antiXi0 with initial energies between 0 and 25\n"
00051           << "GeV.\n";
00052 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:22 2013 for Geant4 by  doxygen 1.4.7