G4LEAntiSigmaPlusInelastic Class Reference

#include <G4LEAntiSigmaPlusInelastic.hh>

Inheritance diagram for G4LEAntiSigmaPlusInelastic:

G4InelasticInteraction G4HadronicInteraction

Public Member Functions

 G4LEAntiSigmaPlusInelastic ()
 ~G4LEAntiSigmaPlusInelastic ()
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription (std::ostream &outFile) const

Detailed Description

Definition at line 45 of file G4LEAntiSigmaPlusInelastic.hh.


Constructor & Destructor Documentation

G4LEAntiSigmaPlusInelastic::G4LEAntiSigmaPlusInelastic (  )  [inline]

Definition at line 49 of file G4LEAntiSigmaPlusInelastic.hh.

References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().

00049                                  : G4InelasticInteraction("G4LEAntiSigmaPlusInelastic")
00050     {
00051       SetMinEnergy( 0.0 );
00052       SetMaxEnergy( 25.*CLHEP::GeV );
00053       G4cout << "WARNING: model G4LEAntiSigmaPlusInelastic is being deprecated and will\n"
00054              << "disappear in Geant4 version 10.0"  << G4endl;
00055     }

G4LEAntiSigmaPlusInelastic::~G4LEAntiSigmaPlusInelastic (  )  [inline]

Definition at line 57 of file G4LEAntiSigmaPlusInelastic.hh.

00057 { }


Member Function Documentation

G4HadFinalState * G4LEAntiSigmaPlusInelastic::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
) [virtual]

Implements G4HadronicInteraction.

Definition at line 52 of file G4LEAntiSigmaPlusInelastic.cc.

References G4InelasticInteraction::CalculateMomenta(), G4Nucleus::Cinema(), G4InelasticInteraction::DoIsotopeCounting(), G4Nucleus::EvaporationEffects(), G4cout, G4endl, G4UniformRand, G4HadProjectile::Get4Momentum(), G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4ReactionProduct::GetKineticEnergy(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4ReactionProduct::GetTotalMomentum(), G4FastVector< Type, N >::Initialize(), isAlive, G4InelasticInteraction::isotopeProduction, G4InuclParticleNames::pp, G4Nucleus::ReturnTargetParticle(), G4HadFinalState::SetEnergyChange(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4HadFinalState::SetMomentumChange(), G4ReactionProduct::SetSide(), G4HadFinalState::SetStatusChange(), G4InelasticInteraction::SetUpChange(), G4HadronicInteraction::theParticleChange, and G4HadronicInteraction::verboseLevel.

00054 { 
00055   const G4HadProjectile *originalIncident = &aTrack;
00056   if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
00057     theParticleChange.SetStatusChange(isAlive);
00058     theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy());
00059     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 
00060     return &theParticleChange;      
00061   }
00062 
00063   // create the target particle
00064   G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
00065     
00066   if (verboseLevel > 1) {
00067     const G4Material *targetMaterial = aTrack.GetMaterial();
00068     G4cout << "G4LEAntiSigmaPlusInelastic::ApplyYourself called" << G4endl;
00069     G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
00070     G4cout << "target material = " << targetMaterial->GetName() << ", ";
00071     G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
00072            << G4endl;
00073   }
00074 
00075   // Fermi motion and evaporation
00076   // As of Geant3, the Fermi energy calculation had not been Done
00077   G4double ek = originalIncident->GetKineticEnergy()/MeV;
00078   G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
00079   G4ReactionProduct modifiedOriginal;
00080   modifiedOriginal = *originalIncident;
00081     
00082   G4double tkin = targetNucleus.Cinema( ek );
00083   ek += tkin;
00084   modifiedOriginal.SetKineticEnergy( ek*MeV );
00085   G4double et = ek + amas;
00086   G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00087   G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
00088   if (pp > 0.0) {
00089     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00090     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00091   }
00092 
00093   // calculate black track energies
00094   tkin = targetNucleus.EvaporationEffects(ek);
00095   ek -= tkin;
00096   modifiedOriginal.SetKineticEnergy( ek*MeV );
00097   et = ek + amas;
00098   p = std::sqrt( std::abs((et-amas)*(et+amas)) );
00099   pp = modifiedOriginal.GetMomentum().mag()/MeV;
00100   if (pp > 0.0) {
00101     G4ThreeVector momentum = modifiedOriginal.GetMomentum();
00102     modifiedOriginal.SetMomentum( momentum * (p/pp) );
00103   }
00104   G4ReactionProduct currentParticle = modifiedOriginal;
00105   G4ReactionProduct targetParticle;
00106   targetParticle = *originalTarget;
00107   currentParticle.SetSide(1); // incident always goes in forward hemisphere
00108   targetParticle.SetSide(-1);  // target always goes in backward hemisphere
00109   G4bool incidentHasChanged = false;
00110   G4bool targetHasChanged = false;
00111   G4bool quasiElastic = false;
00112   G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec;  // vec will contain the secondary particles
00113   G4int vecLen = 0;
00114   vec.Initialize( 0 );
00115     
00116   const G4double cutOff = 0.1;
00117   const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
00118   if ((currentParticle.GetKineticEnergy()/MeV > cutOff) ||
00119       (G4UniformRand() > anni) )
00120     Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
00121             incidentHasChanged, targetHasChanged, quasiElastic);
00122     
00123   CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
00124                    modifiedOriginal, targetNucleus, currentParticle,
00125                    targetParticle, incidentHasChanged, targetHasChanged,
00126                    quasiElastic);
00127     
00128   SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
00129 
00130   if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
00131 
00132   delete originalTarget;
00133   return &theParticleChange;
00134 }

void G4LEAntiSigmaPlusInelastic::ModelDescription ( std::ostream &  outFile  )  const [virtual]

Reimplemented from G4HadronicInteraction.

Definition at line 37 of file G4LEAntiSigmaPlusInelastic.cc.

00038 {
00039   outFile << "G4LEAntiSigmaPlusInelastic is one of the Low Energy\n"
00040           << "Parameterized (LEP) models used to implement inelastic\n"
00041           << "antiSigma+ scattering from nuclei.  It is a re-engineered\n"
00042           << "version of the GHEISHA code of H. Fesefeldt.  It divides the\n"
00043           << "initial collision products into backward- and forward-going\n"
00044           << "clusters which are then decayed into final state hadrons.  The\n"
00045           << "model does not conserve energy on an event-by-event basis.  It\n"
00046           << "may be applied to antiSigma+ with initial energies between 0\n"
00047           << "and 25 GeV.\n";
00048 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:52:22 2013 for Geant4 by  doxygen 1.4.7