#include <G4LEAntiLambdaInelastic.hh>
Inheritance diagram for G4LEAntiLambdaInelastic:
Public Member Functions | |
G4LEAntiLambdaInelastic () | |
~G4LEAntiLambdaInelastic () | |
G4HadFinalState * | ApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) |
virtual void | ModelDescription (std::ostream &outFile) const |
Definition at line 47 of file G4LEAntiLambdaInelastic.hh.
G4LEAntiLambdaInelastic::G4LEAntiLambdaInelastic | ( | ) | [inline] |
Definition at line 51 of file G4LEAntiLambdaInelastic.hh.
References G4cout, G4endl, G4HadronicInteraction::SetMaxEnergy(), and G4HadronicInteraction::SetMinEnergy().
00051 : G4InelasticInteraction("G4LEAntiLambdaInelastic") 00052 { 00053 SetMinEnergy( 0.0 ); 00054 SetMaxEnergy( 25.*CLHEP::GeV ); 00055 G4cout << "WARNING: model G4LEAntiLambdaInelastic is being deprecated and will\n" 00056 << "disappear in Geant4 version 10.0" << G4endl; 00057 }
G4LEAntiLambdaInelastic::~G4LEAntiLambdaInelastic | ( | ) | [inline] |
G4HadFinalState * G4LEAntiLambdaInelastic::ApplyYourself | ( | const G4HadProjectile & | aTrack, | |
G4Nucleus & | targetNucleus | |||
) | [virtual] |
Implements G4HadronicInteraction.
Definition at line 52 of file G4LEAntiLambdaInelastic.cc.
References G4InelasticInteraction::CalculateMomenta(), G4Nucleus::Cinema(), G4InelasticInteraction::DoIsotopeCounting(), G4Nucleus::EvaporationEffects(), G4cout, G4endl, G4UniformRand, G4HadProjectile::GetDefinition(), G4DynamicParticle::GetDefinition(), G4HadProjectile::GetKineticEnergy(), G4HadProjectile::GetMaterial(), G4ReactionProduct::GetMomentum(), G4Material::GetName(), G4ParticleDefinition::GetParticleName(), G4ParticleDefinition::GetPDGMass(), G4ReactionProduct::GetTotalMomentum(), G4FastVector< Type, N >::Initialize(), G4InelasticInteraction::isotopeProduction, G4InuclParticleNames::pp, G4Nucleus::ReturnTargetParticle(), G4ReactionProduct::SetKineticEnergy(), G4ReactionProduct::SetMomentum(), G4ReactionProduct::SetSide(), G4InelasticInteraction::SetUpChange(), G4HadronicInteraction::theParticleChange, and G4HadronicInteraction::verboseLevel.
00054 { 00055 const G4HadProjectile *originalIncident = &aTrack; 00056 00057 // create the target particle 00058 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle(); 00059 00060 if (verboseLevel > 1) { 00061 const G4Material *targetMaterial = aTrack.GetMaterial(); 00062 G4cout << "G4LEAntiLambdaInelastic::ApplyYourself called" << G4endl; 00063 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, "; 00064 G4cout << "target material = " << targetMaterial->GetName() << ", "; 00065 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName() 00066 << G4endl; 00067 } 00068 00069 // Fermi motion and evaporation 00070 // As of Geant3, the Fermi energy calculation had not been Done 00071 G4double ek = originalIncident->GetKineticEnergy()/MeV; 00072 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV; 00073 G4ReactionProduct modifiedOriginal; 00074 modifiedOriginal = *originalIncident; 00075 00076 G4double tkin = targetNucleus.Cinema( ek ); 00077 ek += tkin; 00078 modifiedOriginal.SetKineticEnergy( ek*MeV ); 00079 G4double et = ek + amas; 00080 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) ); 00081 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV; 00082 if (pp > 0.0) { 00083 G4ThreeVector momentum = modifiedOriginal.GetMomentum(); 00084 modifiedOriginal.SetMomentum( momentum * (p/pp) ); 00085 } 00086 00087 // calculate black track energies 00088 tkin = targetNucleus.EvaporationEffects( ek ); 00089 ek -= tkin; 00090 modifiedOriginal.SetKineticEnergy( ek*MeV ); 00091 et = ek + amas; 00092 p = std::sqrt( std::abs((et-amas)*(et+amas)) ); 00093 pp = modifiedOriginal.GetMomentum().mag()/MeV; 00094 if (pp > 0.0) { 00095 G4ThreeVector momentum = modifiedOriginal.GetMomentum(); 00096 modifiedOriginal.SetMomentum( momentum * (p/pp) ); 00097 } 00098 00099 G4ReactionProduct currentParticle = modifiedOriginal; 00100 G4ReactionProduct targetParticle; 00101 targetParticle = *originalTarget; 00102 currentParticle.SetSide(1); // incident always goes in forward hemisphere 00103 targetParticle.SetSide(-1); // target always goes in backward hemisphere 00104 G4bool incidentHasChanged = false; 00105 G4bool targetHasChanged = false; 00106 G4bool quasiElastic = false; 00107 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles 00108 G4int vecLen = 0; 00109 vec.Initialize(0); 00110 00111 const G4double cutOff = 0.1; 00112 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 ); 00113 if ( (originalIncident->GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) ) 00114 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle, 00115 incidentHasChanged, targetHasChanged, quasiElastic); 00116 00117 CalculateMomenta(vec, vecLen, originalIncident, originalTarget, 00118 modifiedOriginal, targetNucleus, currentParticle, 00119 targetParticle, incidentHasChanged, targetHasChanged, 00120 quasiElastic); 00121 00122 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged); 00123 00124 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus); 00125 00126 delete originalTarget; 00127 return &theParticleChange; 00128 }
void G4LEAntiLambdaInelastic::ModelDescription | ( | std::ostream & | outFile | ) | const [virtual] |
Reimplemented from G4HadronicInteraction.
Definition at line 37 of file G4LEAntiLambdaInelastic.cc.
00038 { 00039 outFile << "G4LEAntiLambdaInelastic is one of the Low Energy Parameterized\n" 00040 << "(LEP) models used to implement inelastic anti-lambda\n" 00041 << "scattering from nuclei. It is a re-engineered version of the\n" 00042 << "GHEISHA code of H. Fesefeldt. It divides the initial\n" 00043 << "collision products into backward- and forward-going clusters\n" 00044 << "which are then decayed into final state hadrons. The model\n" 00045 << "does not conserve energy on an event-by-event basis. It may\n" 00046 << "be applied to anti-lambdas with initial energies between 0 and\n" 00047 << "25 GeV.\n"; 00048 }