#include <G4CoulombBarrier.hh>
Inheritance diagram for G4CoulombBarrier:
Public Member Functions | |
G4CoulombBarrier () | |
G4CoulombBarrier (G4int anA, G4int aZ) | |
virtual | ~G4CoulombBarrier () |
G4double | GetCoulombBarrier (G4int ARes, G4int ZRes, G4double U) const |
Definition at line 43 of file G4CoulombBarrier.hh.
G4CoulombBarrier::G4CoulombBarrier | ( | ) |
G4CoulombBarrier::~G4CoulombBarrier | ( | ) | [virtual] |
Implements G4VCoulombBarrier.
Definition at line 57 of file G4CoulombBarrier.cc.
References G4endl, G4VCoulombBarrier::GetA(), G4Pow::GetInstance(), and G4VCoulombBarrier::GetZ().
00059 { 00060 G4double Barrier = 0.0; 00061 if (ZRes > ARes || ARes < 1) { 00062 std::ostringstream errOs; 00063 errOs << "G4CoulombBarrier::GetCoulombBarrier: "; 00064 errOs << "Wrong values for "; 00065 errOs << "residual nucleus A = " << ARes << " "; 00066 errOs << "and residual nucleus Z = " << ZRes << G4endl; 00067 00068 throw G4HadronicException(__FILE__, __LINE__, errOs.str()); 00069 } 00070 if (GetA() == 1 && GetZ() == 0) { 00071 Barrier = 0.0; // Neutron Coulomb Barrier is 0 00072 } else { 00073 00074 // JMQ: old coulomb barrier commented since it does not agree with Dostrovski's prescription 00075 // and too low barriers are obtained (for protons at least) 00076 // calculation of K penetration factor is correct 00077 // G4double CompoundRadius = CalcCompoundRadius(static_cast<G4double>(ZRes)); 00078 // Barrier = elm_coupling/CompoundRadius * static_cast<G4double>(GetZ())*static_cast<G4double>(ZRes)/ 00079 // (std::pow(static_cast<G4double>(GetA()),1./3.) + std::pow(static_cast<G4double>(ARes),1./3.)); 00080 00082 G4double rho=1.2*fermi; 00083 if(GetA()==1 && GetZ()==1){ rho=0.0;} 00084 00085 G4double RN=1.5*fermi; 00086 // VI cleanup 00087 Barrier=elm_coupling*(GetZ()*ZRes)/(RN * G4Pow::GetInstance()->Z13(ARes) + rho); 00088 00089 // Barrier penetration coeficient 00090 G4double K = BarrierPenetrationFactor(ZRes); 00091 00092 Barrier *= K; 00093 00094 // JMQ : the following statement has unknown origin and dimensionally is meaningless( energy divided by mass number in argument of sqrt function). Energy dependence of Coulomb barrier penetrability should be included in proper way (if needed..) 00095 // Barrier /= (1.0 + std::sqrt(U/(2.0*static_cast<G4double>(ARes)))); 00096 // 00097 } 00098 return Barrier; 00099 }