G4CoulombBarrier Class Reference

#include <G4CoulombBarrier.hh>

Inheritance diagram for G4CoulombBarrier:

G4VCoulombBarrier G4AlphaCoulombBarrier G4DeuteronCoulombBarrier G4He3CoulombBarrier G4NeutronCoulombBarrier G4ProtonCoulombBarrier G4TritonCoulombBarrier

Public Member Functions

 G4CoulombBarrier ()
 G4CoulombBarrier (G4int anA, G4int aZ)
virtual ~G4CoulombBarrier ()
G4double GetCoulombBarrier (G4int ARes, G4int ZRes, G4double U) const

Detailed Description

Definition at line 43 of file G4CoulombBarrier.hh.


Constructor & Destructor Documentation

G4CoulombBarrier::G4CoulombBarrier (  ) 

Definition at line 42 of file G4CoulombBarrier.cc.

00042                                   : G4VCoulombBarrier(1,0) 
00043 {}

G4CoulombBarrier::G4CoulombBarrier ( G4int  anA,
G4int  aZ 
)

Definition at line 45 of file G4CoulombBarrier.cc.

00046   : G4VCoulombBarrier(anA,aZ) 
00047 {}

G4CoulombBarrier::~G4CoulombBarrier (  )  [virtual]

Definition at line 49 of file G4CoulombBarrier.cc.

00050 {}


Member Function Documentation

G4double G4CoulombBarrier::GetCoulombBarrier ( G4int  ARes,
G4int  ZRes,
G4double  U 
) const [virtual]

Implements G4VCoulombBarrier.

Definition at line 57 of file G4CoulombBarrier.cc.

References G4endl, G4VCoulombBarrier::GetA(), G4Pow::GetInstance(), and G4VCoulombBarrier::GetZ().

00059 {
00060   G4double Barrier = 0.0;
00061   if (ZRes > ARes || ARes < 1) {
00062     std::ostringstream errOs;
00063     errOs << "G4CoulombBarrier::GetCoulombBarrier: ";
00064     errOs << "Wrong values for ";
00065     errOs << "residual nucleus A = " << ARes << " ";
00066     errOs << "and residual nucleus Z = " << ZRes << G4endl;
00067 
00068     throw G4HadronicException(__FILE__, __LINE__, errOs.str());
00069   }
00070   if (GetA() == 1 && GetZ() == 0) {
00071     Barrier = 0.0;   // Neutron Coulomb Barrier is 0
00072   } else {
00073 
00074     // JMQ: old coulomb barrier commented since it does not agree with Dostrovski's prescription
00075     // and too low  barriers are obtained (for protons at least)
00076     // calculation of K penetration factor is correct
00077     //    G4double CompoundRadius = CalcCompoundRadius(static_cast<G4double>(ZRes));
00078     //    Barrier = elm_coupling/CompoundRadius * static_cast<G4double>(GetZ())*static_cast<G4double>(ZRes)/
00079     //      (std::pow(static_cast<G4double>(GetA()),1./3.) + std::pow(static_cast<G4double>(ARes),1./3.));
00080 
00082     G4double rho=1.2*fermi; 
00083     if(GetA()==1 && GetZ()==1){  rho=0.0;}  
00084 
00085     G4double RN=1.5*fermi;  
00086     // VI cleanup 
00087     Barrier=elm_coupling*(GetZ()*ZRes)/(RN * G4Pow::GetInstance()->Z13(ARes) + rho);
00088 
00089     // Barrier penetration coeficient
00090     G4double K = BarrierPenetrationFactor(ZRes);
00091 
00092     Barrier *= K;
00093                 
00094     // JMQ : the following statement has unknown origin and dimensionally is meaningless( energy divided by mass number in argument of sqrt function). Energy dependence of Coulomb barrier penetrability should be included in proper way (if needed..)
00095     //   Barrier /= (1.0 + std::sqrt(U/(2.0*static_cast<G4double>(ARes))));
00096     //
00097   }
00098   return Barrier;
00099 }


The documentation for this class was generated from the following files:
Generated on Mon May 27 17:51:43 2013 for Geant4 by  doxygen 1.4.7