Cosmology with Rayleigh scattering of the CMB

Rayleigh scattering of the Cosmic Microwave Background (CMB) is a less studied yet potentially powerful probe of the recombination history. Scattering of CMB photons off neutral species right after recombination presents a distinctive $\nu^4$ scaling with frequency as well as a strong correlation with the primary CMB. These unique features should facilitate its detection by the next generation of CMB experiments.

SciPol internship

We are proposing a L3 internship to evaluate our ability to characterize instrumental parameters (in particular intensity-to-polarization and cross-polarization effects) within an updated component separation framework. This internship would be part of the global effort undertaken by the SciPol project:

Optimisation du système de contrôle et d’acquisition d’une expérience de détection du rayonnement fossile à 10GHz.

Le rayonnement fossile à 3K est la première lumière de l’Univers et a été émis environ 380000 ans après le Big Bang. Il possède un spectre de corps noir avec une température d’environ 2.73K et peut ainsi être observé dans la gamme de longueurs d’onde millimétriques. Le rayonnement fossile fait l’objet d’intenses recherches en cosmologie observationnelle, en particulier au niveau de la polarisation qui renfermerait les traces de l’inflation, une phase d’expansion exponentielle de l’Univers aux tous premiers instants.

CMB Foreground Studies

Measurements of the Cosmic Microwave Background (CMB) have transformed cosmology into a precision science, and they continue to deliver new insights into the birth and evolution of our Universe. One of the major hurdles in extracting these insights, however, come from "foreground" signals emitted from intervening matter. These spurious emissions can mask and even mimic the primordial CMB, introducing errors into our conclusions.

Pipeline development for next-generation Cosmic Microwave Background observations

The Cosmic Microwave Background (CMB), relic radiation from the hot Big-Bang, carries a wealth of information about physical processes at work in the very early universe, at energies far beyond the reach of man-made particle accelerators. Next generation observatories are poised to further constrain physics beyond the Standard Model of particles and fields, the nature of Dark Matter and Dark Energy, the existence of primordial Gravitational Waves, and the formation of structures. 

Antenna coupled Kinetic Inductance Detectors for the observation of the Cosmic Microwave Background polarisation

The study of the cold Universe allows us to go back to the origins of our solar system by observing the embryos of stars, or to the origins of the Universe by measuring the polarisation of the Cosmic Microwave Background (CMB). These sub-millimetre and millimetre instruments require the use of superconducting detectors cooled down to 100mK. Kinetic Inductance Detectors (KIDs) are based on superconducting resonators and are about to replace bolometers thanks to their natural frequency multiplexing and ease of production (in their basic form). 


S'abonner à RSS - Cosmologie