Particules

 

On the 16th and 17th of September was held in Paris the kick-off meeting for the Astrophysics Centre for Multimessenger studies in Europe – ACME. This HORIZON-INFRA-2023-SERV-01 EU-funded project coordinated by Centre national de la recherche scientifique CNRS aims to realize an ambitious coordinated European-wide optimization of the accessibility and cohesion...


Les 16 et 17 septembre s'est tenue à Paris la réunion de lancement du Astrophysics Centre for Multimessenger studies in Europe - ACME. Ce projet HORIZON-INFRA-2023-SERV-01 financé par l'UE et coordonné par le Centre national de la recherche scientifique CNRS vise à réaliser une ambitieuse optimisation coordonnée à l'échelle européenne de l'accessibilité et de la cohésion entre plusieurs infrastructures de recherche de pointe en matière d'astroparticules et d'astronomie, offrant un accès aux instruments, aux données et à l’expertise, axés sur la nouvelle science de l'astrophysique...

Confronting the primary systematic uncertainties towards the DUNE precision era of neutrino oscillation measurements

The next generation of accelerator-based neutrino oscillation experiments, DUNE and Hyper-Kamiokande, have the potential to revolutionise our understanding of fundamental physics, offering opportunities to: characterise charge-parity (CP) violation in the lepton section (potentially linked to the matter-antimatter imbalance in the Universe); determine the neutrino mass ordering; and to search for physics even further beyond the standard model.

DUNE - exploiting light and charge in the Vertical Drift detector

The Deep Underground Neutrino Experiment (DUNE) is a next generation neutrino oscillation experiment. A high power wide-band beam operating in neutrino (anti-neutrino) mode will be produced at FNAL (Chicago). Some 1,300 km away, deep underground at the Sandford Underground Research Facility (South Dakota), four gigantic Far Detector modules will measure νμ (anti-νμ) disappearance, νe (anti-νe) and ντ (anti-ντ) appearance with the goals of:

Search for light dark matter candidates with the DarkSide-20k liquid argon time projection chamber

Dark Matter is one of the main puzzles in fundamental physics and Weakly Interacting Massive Particles (WIMP) are among the best-motivated dark matter particle candidates. As of today, the most sensitive experimental technique to discover the WIMPs in the mass range from 1 GeV/c2 to 10 TeV/c2 is the dual phase Time Projection Chamber (TPC) filled with noble liquids. The “dual-phase” approach has the main advantage to provide simultaneous access to the ionization and to the scintillation signals.

Event reconstruction in DarkSide-20k, a liquid argon TPC for direct dark matter search

Dark Matter is one of the main puzzles in fundamental physics and Weakly Interacting Massive Particles (WIMP) are among the best-motivated dark matter particle candidates. As of today, the most sensitive experimental technique to discover the WIMPs in the mass range from 2 GeV to 10 TeV is the dual phase Time Projection Chamber (TPC) filled with noble liquids. DarkSide-20k is the next generation of Liquid Argon (LAr) TPC, which will be running at LNGS (Italy) from 2026 with 50-ton active mass.

Studying supernovae at KM3NeT with low- and high-energy neutrinos

Core-collapse supernovae, the collapse of heavy stars under their own weight, are key drivers of the evolution of galaxies associated with multiple unsolved questions: Why do so many of them lead to cataclysmic explosions? Under what conditions do they create black holes? And could supernovae produce cosmic rays, these ultra-high energy nuclei which are observed on Earth but whose origin is unknown? Answers to these key questions could be provided by neutrinos.

Pages

S'abonner à RSS - Particules