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Outline

- Basics physics of inflation.

- Current observational picture.

- Data analysis strategies for constraining inflation.



Motivating inflation – CMB observations

CMB anisotropies
Probe of: 
- Global cosmological parameters.
- Initial seed fluctuations.
- Reionization history.

CMB spectrum:
Probe of:
-Rescattering.
-Relic decays.
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Motivating inflation – CMB observations

The problem: Initial conditions:
- Separate regions of the universe share the same black body 

spectrum and fluctuations, even though they are apparently outside one 
another's sound horizon in the standard hot big bang.

Inescapable conclusion:
- New physics beyond the Standard Big Bang required to explain this. 

Courtesy ARCADE



CMB quadrupole 
today
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Perturbation problem
- Modes with a given comoving wavelength remain frozen while they are “outside the 
horizon”. Smaller scales enter the horizon first and immediately begin to oscillate and 
collapse. Largest scales remain frozen.
- The Sachs-Wolfe effect and acoustic peaks are striking manifestations of this physics.

Problem: How to excite these modes when the horizon is so much 
smaller than the comoving wavelength?
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Physics of inflation
- Based on the perturbation (and the horizon and flatness) 
problem, we will speculate that           decreased in the early 
universe.

- Then explore the consequences and characteristics of an 
epoch where            is decreasing.

- Implement this within the big-bang model using a scalar field.

- Tensor perturbations from inflation.
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Key speculation:
What if             decreases in the early universe?

  The idea of accelerated expansion follows directly.
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Scalar field implementation of inflation
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- Up until now, no mention of the matter responsible for inflation.
- Typically consider “rolling” scalar field, to avoid problems associated 
with scalar field trapped in a false vacuum:

Acceleration equation:                                       

  => Require negative pressure for accelerated expansion. 
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Desired accelerated expansion 
given by the potential energy 
dominated regime:
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Exponential expansion

Energy density.

Pressure.



Equations of motion - background:

Background equations:
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Scalar field evolution: analogy with 
rolling on a potential, with friction from  
           term.

Friedmann equation: potential 
energy domination, H=constant.
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Equations of motion - perturbations:

Schematic picture:

- Here we will cover the tensor perturbations.
- Analogous equations for the scalar sector, but requires more 
involved cosmological perturbation theory.



Equations of motion - perturbations

Usually rewritten and solved using a conformal time formalism:

During inflation:
  “Horizon crossing” defined by the epoch

v≡ah

- Skip the derivation and quote the equation of motion for tensor 
perturbations:

Encodes the fact that gravitational waves decay
once they enter the horizon, à la CAMB.

Sketch of the power spectrum calculation:
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Equation of motion has a similar form to the quantum 
harmonic oscillator. As such, v is now considered as a 
complex amplitude and is normalised via QFT:

Finally we want to calculate the variance in h, the original 
perturbation, at late times:
Result:

For exact spectra, we can perform mode-by-mode integration.
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Oscillatory solution at early times, 
growing solution after horizon crossing.

Scale invariant tensor power spectrum
Amplitude is proportional to the energy 
scale of inflation.
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Reminder: “slow-roll inflation” means  

Scalars:

Tensors:

H , ̇  vary slowly

n
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Power spectrum

Spectral index

Power spectrum

Spectral index

Power spectrum from inflation – slow-roll approximation

Key result:

Shape of primordial power 
spectrum probes the 
dynamics of the early 

universe.

 “slow-roll parameters”



TT

Contribution from 
inflation T/S = 0.3

Inflation and CMB polarization
Standard model 
prediction

EE

TEBB

- Gravitational waves 
have two polarization 
states. This extra 
freedom allows to 
distort the CMB to 
produce a B mode 
pattern, unlike scalars 
perturbations.

Inflation at high energies produces a tensor spectrum, 
leading to a B-mode peak on large scales:



B-modes and inflation

BICEP collaboration

- A small window exists for 
observing B modes from inflation.

- Reality check : Energy scale of 
inflation is completely unknown. 
Assuming energy scale of inflation 
may be a low as the electroweak 
scale, then r may be 54 orders of 
magnitude below the current 
bound r<0.3

Nevertheless: B-modes provide a direct constraint on the 
inflationary hot-big bang model, and physics at very high 
energies. 
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N= ln a

Constraints on the expansion history

Gravitational 
wave bound

COBE, and future 
B-mode bounds
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N= ln a

Constraints on the expansion history

Nucleosynthesis

Primordial power spectrum
constraints (CMB + LSS)
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N= ln a

Constraints on the expansion history

Drop in energy scale during inflation ? 

Multiple bouts of inflation ?

Electroweak inflation ?
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- WMAP vindicates the picture of 
photon-baryon oscillations, 
gravitationally coupled to dark 
matter potentials.

- Initial conditions are roughly scale 
invariant adiabatic Gaussian 
perturbations.



V=4

- WMAP tentatively indicates that we 
may need to go beyond the long-
standing Harrison-Zeldovich scale-
invariant spectrum.

- They found that the spectral index 
seems to be a little less that 1. This 
sits well with the idea of a dynamical 
origin to the perturbations.

- CMB constraints beginning to make 
an impact on toy models of inflation 
like                 . These models basically 
over predict the tensor component.

Spergel et al 2006



Primordial power spectrum
The basic picture: primordial fluctuations act as initial 
conditions for CMB anisotropies and later seed structure 
formation via gravitational instability. 

The basic model: primordial fluctuations are gaussian adiabatic 
density perturbations described by a power spectrum P(k)  taken 
to be nearly scale-invariant: 

Currently:  Normalization

          Spectral index 

The basic problem: exploit       and our understanding of the 
CMB transfer functions to determine the details of P(k).
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Measured anisotropy 
spectrum

CMB transfer functions.
Sensitive to a handful of 
cosmological parameters

{i }
ns≃0.97±0.03
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- Information from polarization is important in this context. 
Polarization is a cleaner probe of the CMB transfer functions.

Hu and Okamoto 2006



Spergel et al 2006

- Typically assume a piecewise
constant primordial power
spectrum.

- Integrate out the usual
cosmological parameters along
with the power spectrum
amplitudes.

- We can see that the basic
scale-invariant model fits quite
well.



- Alternatively, can construct an 
orthonormal power spectrum 
model. 

- Append the mode amplitudes      
to the usual list of cosmological 
parameters and integrate out the 
parameter space using MCMC.
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Hu and Okamoto 2004
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- Advantages: automation; optimization of the model to a given 
noise level; PCA modes can also be constructed to be orthogonal 
to the effect of cosmological parameters on the CMB spectrum 
=> PCA constraints give a primordial power spectrum likelihood 
function.



- First construct the Fisher information matrix for the instrument, 
using a set of power spectrum test spikes as parameters 

                                                                  X, Y = {TT, TE, EE, BB}

- Then invert F to obtain a covariance matrix and diagonalise to 
obtain the orthonormal eigenvectors     which are the PCA power 
spectrum modes.
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Details of the construction
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Encodes transfer of power from k space to l space
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- Kadota, Dodelson, Hu and Stewart 2006 go one step further to 
propose what can be described as “principal component analysis of 
the inflationary potential”.

Current power spectrum PCA constraints are fairly weak:

Leach 2006

- Large data sets, and unknowns on the theory side drives this type 
of detailed empirical study.



Summary

- CMB polarization will provide important constraints on the 
inflationary hot big bang model.

- E-mode spectrum constrains the dynamics of inflation via the 
primordial scalar power spectrum.

- B-mode spectrum constrains the energy scale of inflation via the 
tensor spectrum.


