EB mixing because of incomplete sky coverage

February 27, 2007

Overview of the problem

- Multipoles from (Q, U) data:

$$
\underbrace{\binom{\tilde{a}_{l m}^{E}}{\tilde{a}_{l m}^{B}}}_{\tilde{\mathbf{a}}_{l m}}=\int d \vec{n} \underbrace{\left(\begin{array}{cc}
-X_{1, l m}^{\dagger} & -i X_{2, l m}^{\dagger} \\
i X_{2, l m}^{\dagger} & -X_{1, l m}^{\dagger}
\end{array}\right)}_{\mathbf{x}_{l m}^{\dagger}} \underbrace{\binom{Q(\vec{n})}{U(\vec{n})}}_{\mathbf{P}}
$$

The $\mathbf{X}_{l m}$ is an orthonormal basis on the sphere:
$\int d \vec{n} \mathbf{X}_{l m}(\vec{n}) \mathbf{X}_{l^{\prime} m^{\prime}}^{\dagger}(\vec{n})=\delta_{/ / \prime} \delta_{m m^{\prime}} \mathbf{I}$

- but incomplete sky coverage:

$$
\tilde{\mathbf{a}}_{l m}=\int d \vec{n} W(\vec{n}) \mathbf{X}_{l m}^{\dagger}(\vec{n}) \mathbf{P}(\vec{n})
$$

The $\mathbf{X}_{I m}$ is no more a basis:
$\int d \vec{n} W(\vec{n}) \mathbf{X}_{l m}(\vec{n}) \mathbf{X}_{l^{\prime} m^{\prime}}^{\dagger}(\vec{n}) \neq \delta_{l / \prime} \delta_{m m^{\prime}} \mathbf{I}$

How the problem can be solved

Estimation of power spectra

- Quadratic estimators of $C_{I}^{E(B)}$ are biased because of I-modes mixing and $E B$ mixing
- As $C_{l}^{B} \ll C_{l}^{E}, B$ power spectra covariance dominated by E contributions
\rightarrow big error bars

Solving the mixing

- Find an orthonormal basis on the cut sky (Bunn et al.)
- Remove the contributions of ambiguous modes
- Use alternative fields pure in E or B mode (Smith \& Zaldarriaga)
- Spin weighted counterterms (Smith)

Polarized fields on incomplete sky

Polarized fields on the sphere

Any polarized fields can be constructed from the sum of pure E-modes, Ψ_{E}, and pure B-modes, Ψ_{B} :

$$
\mathbf{P}(\vec{n})=\mathbf{D}_{E} \Psi_{E}(\vec{n})+\mathbf{D}_{B} \Psi_{B}(\vec{n})
$$

with the condition on the sphere

$$
\mathbf{D}_{E}^{\dagger} \mathbf{D}_{B}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{E}=0 \quad \text { and } \quad \mathbf{D}_{E}^{\dagger} \mathbf{D}_{E}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{B} \simeq \nabla^{4}
$$

Polarized fields on incomplete sky
The E / B decomposition on a part of the sky is not unique: E and B subspaces overlap
\rightarrow Some modes verify the E and B conditions: $\mathbf{D}_{E}^{\dagger} \mathbf{P}_{a}=0$ et $\mathbf{D}_{B}^{\dagger} \mathbf{P}_{a}=0$
\rightarrow Polarization field is decomposed into pure E modes, pure B modes and ambiguous modes

Polarized fields on incomplete sky

Flat sky approximation

- Ambiguous modes constructed as E modes which satisfies the B mode condition : $\mathbf{P}_{a}=\mathbf{D}_{E} \Psi$ with $\mathbf{D}_{E}^{\dagger} \mathbf{P}_{a}=0$
\rightarrow ambiguous modes are the one satisfying $\nabla^{4} \Psi=0$
- Pure E modes orthogonal to all B modes (pure or ambiguous) : $\int_{\Omega} \mathbf{P}_{E} \cdot\left(\mathbf{D}_{B} \Psi_{B}\right) d \Omega=0$
$\rightarrow \Psi_{E}$ verify Dirichlet and Neumann boundary conditions
\rightarrow To find eigenfunctions of ∇^{4} satisfying the boundary requirement and apply the $\mathbf{D}_{E(B)}$ operator to these functions for deriving the $E(B)$ modes.

To summarize

- Ambiguous modes are given by eignefunctions of ∇^{4} with vanishing eigenvalue
- pure E modes are given by eigenfunctions of ∇^{4} which verifies the Dirichlet and Neumann boundary conditions

Filtering the ambiguous modes

Complete sky coverage

- Polarized fields decomposed into E and B modes:

$$
\mathbf{P}=\mathbf{D}_{E} \Psi_{E}+\mathbf{D}_{B} \Psi_{B}
$$

- Apply the $\mathbf{D}_{E(B)}^{\dagger}$ to $\mathbf{P}: \mathbf{D}_{E}^{\dagger} \mathbf{P}=\mathbf{D}_{E}^{\dagger} \mathbf{D}_{E} \Psi_{E}$ and $\mathbf{D}_{B}^{\dagger} \mathbf{P}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{B} \Psi_{B}$ because $\mathbf{D}_{E}^{\dagger} \mathbf{D}_{B}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{E}=0$

Incomplete sky coverage

- Polarized fields decomposed into pure E, pure B and ambiguous modes: $\mathbf{P}=\mathbf{D}_{E} \Psi_{E}+\mathbf{D}_{B} \Psi_{B}+\mathbf{P}_{a}$
- Apply the $\mathbf{D}_{E(B)}^{\dagger}$ to $\mathbf{P}: \mathbf{D}_{E}^{\dagger} \mathbf{P}=\mathbf{D}_{E}^{\dagger} \mathbf{D}_{E} \Psi_{E}$ and $\mathbf{D}_{B}^{\dagger} \mathbf{P}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{B} \Psi_{B}$
because $\mathbf{D}_{E}^{\dagger} \mathbf{D}_{B}=\mathbf{D}_{B}^{\dagger} \mathbf{D}_{E}=0$ and $\mathbf{D}_{E}^{\dagger} \mathbf{P}_{a}=\mathbf{D}_{B}^{\dagger} \mathbf{P}_{a}=0$ by construction

Filtering the ambiguous modes

Searching for $\Psi_{E(B)}$ fields

- $Q+i U=\check{\partial}\left(\Psi_{E}+i \Psi_{B}\right)$ and $Q-i U=\bar{\delta} \bar{\delta}\left(\Psi_{E}-i \Psi_{B}\right)$

$$
\begin{aligned}
& 2 \Psi_{E}=\bar{\varnothing} \bar{\delta}(Q+i U)+\check{\partial}(Q-i U)=-2 \sum \sqrt{\frac{(I-2)!}{(1+2)!}} a_{l m}^{E} Y_{l m} \\
& 2 \Psi_{B}=-i \bar{\delta} \bar{\delta}(Q+i U)+i ð ð(Q-i U)=-2 \sum \sqrt{\frac{(I-2)!}{(1+2)!}} a_{l m}^{B} Y_{l m}
\end{aligned}
$$

Working with Ψ fields

- If Ψ fields are measured, the $E B$ mixing is completely removed
- If Stokes parameters are measured, then taking derivatives of pixelised maps leads to (controled) $E B$ mixing and to noise with a very blue spectrum $\mathcal{N}_{\ell} \propto \ell^{4}$

Filtering the ambiguous modes

The origin of E mode into B mode

- the B multipole is the inner product of pure B mode spherical harmonics with polarization fields:

$$
\tilde{a}_{l m}^{B}=\int d \vec{n} W(\vec{n}) \mathbf{D}_{B}^{\dagger} Y_{l m}^{\dagger} \cdot \mathbf{P}
$$

- \mathbf{P} is decomposed into pure E, pure B and ambiguous modes:

$$
\begin{aligned}
\tilde{a}_{l m}^{B}= & \underbrace{\int d \vec{n} W(\vec{n}) \mathbf{D}_{B}^{\dagger} Y_{l m}^{\dagger} \cdot \mathbf{D}_{E} \Psi_{E}}_{=0} \\
& +\underbrace{\int d \vec{n} W(\vec{n}) \mathbf{D}_{B}^{\dagger} Y_{l m}^{\dagger} \cdot \mathbf{D}_{B} \Psi_{B}}_{\neq 0} \\
& +\underbrace{\int d \vec{n} W(\vec{n}) \mathbf{D}_{B}^{\dagger} Y_{l m}^{\dagger} \cdot \mathbf{P}_{a}}_{\neq 0}
\end{aligned}
$$

Filtering the ambiguous modes

Use a pure B spherical harmonics on the incomplete sky

- New definition of the multipole estimators: $\tilde{a}_{l m}^{B}=\int d \vec{n} \mathbf{D}_{B}^{\dagger}\left(W \times Y_{l m}^{\dagger}\right) \cdot \mathbf{P}$
with W satisfying Dirichlet and Neuman boundary conditions
- \mathbf{P} is decomposed into pure E, pure B and ambiguous modes :

$$
\begin{aligned}
\tilde{a}_{l m}^{B}= & \underbrace{\int d \vec{n} \mathbf{D}_{B}^{\dagger}\left(W Y_{l m}^{\dagger}\right) \cdot \mathbf{D}_{E} \Psi_{E}}_{=0} \\
& +\underbrace{\int d \vec{n} \mathbf{D}_{B}^{\dagger}\left(W Y_{l m}^{\dagger}\right) \cdot \mathbf{D}_{B} \Psi_{B}}_{\neq 0} \\
& +\underbrace{\int d \vec{n} \mathbf{D}_{B}^{\dagger}\left(W Y_{l m}^{\dagger}\right) \cdot \mathbf{P}_{a}}_{=0}
\end{aligned}
$$

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform white noise

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform white noise

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform noise (left) or inhomogeneous noise (right)

Filtering the ambiguous modes: with optimized window function

EBEx type experiment with homogeneous uncorrelated noise: aliased power

Filtering the ambiguous modes：with optimized window function

EBEx type experiment with homogeneous uncorrelated noise： error bars

