EB mixing because of incomplete sky coverage

February 27, 2007

Overview of the problem

Multipoles from (Q, U) data:

The \mathbf{X}_{lm} is an orthonormal basis on the sphere: $\int d\vec{n} \mathbf{X}_{lm}(\vec{n}) \mathbf{X}^{\dagger}_{l'm'}(\vec{n}) = \delta_{ll'} \delta_{mm'} \mathbf{I}$

but incomplete sky coverage:

$$ilde{\mathbf{a}}_{lm} = \int d\vec{n} W(\vec{n}) \mathbf{X}^{\dagger}_{lm}(\vec{n}) \mathbf{P}(\vec{n})$$

The \mathbf{X}_{lm} is no more a basis: $\int d\vec{n} W(\vec{n}) \mathbf{X}_{lm}(\vec{n}) \mathbf{X}_{l'm'}^{\dagger}(\vec{n}) \neq \delta_{ll'} \delta_{mm'} \mathbf{I}$

How the problem can be solved

Estimation of power spectra

- Quadratic estimators of C_l^{E(B)} are biased because of *l*-modes mixing and *EB* mixing
- ► As $C_I^B \ll C_I^E$, *B* power spectra covariance dominated by *E* contributions
 - \rightarrow big error bars

Solving the mixing

- ▶ Find an orthonormal basis on the cut sky (Bunn et al.)
- Remove the contributions of ambiguous modes
 - ► Use alternative fields pure in E or B mode (Smith & Zaldarriaga)

Spin weighted counterterms (Smith)

Polarized fields on incomplete sky

Polarized fields on the sphere

Any polarized fields can be constructed from the sum of *pure E*-modes, Ψ_E , and *pure B*-modes, Ψ_B :

$$\mathbf{P}(\vec{n}) = \mathbf{D}_E \Psi_E(\vec{n}) + \mathbf{D}_B \Psi_B(\vec{n})$$

with the condition on the sphere

$$\mathbf{D}_E^\dagger \mathbf{D}_B = \mathbf{D}_B^\dagger \mathbf{D}_E = 0 \quad \text{and} \quad \mathbf{D}_E^\dagger \mathbf{D}_E = \mathbf{D}_B^\dagger \mathbf{D}_B \simeq \nabla^4$$

Polarized fields on incomplete sky

The E/B decomposition on a part of the sky is not unique: E and B subspaces overlap

 \rightarrow Some modes verify the *E* and *B* conditions : $\mathbf{D}_{E}^{\dagger}\mathbf{P}_{a} = 0$ et $\mathbf{D}_{B}^{\dagger}\mathbf{P}_{a} = 0$

 \rightarrow Polarization field is decomposed into *pure E* modes, *pure B* modes and *ambiguous* modes

9 g (?

Polarized fields on incomplete sky

Flat sky approximation

► Ambiguous modes constructed as *E* modes which satisfies the *B* mode condition : P_a = D_EΨ with D[†]_EP_a = 0 → ambiguous modes are the one satisfying ∇⁴Ψ = 0

▶ Pure *E* modes orthogonal to all *B* modes (pure or ambiguous) : $\int_{\Omega} \mathbf{P}_E \cdot (\mathbf{D}_B \Psi_B) d\Omega = 0$ $\rightarrow \Psi_E$ verify Dirichlet and Neumann boundary conditions \rightarrow To find eigenfunctions of ∇^4 satisfying the boundary requirement and apply the $\mathbf{D}_{E(B)}$ operator to these functions for deriving the *E*(*B*) modes.

To summarize

- ► Ambiguous modes are given by eignefunctions of ∇^4 with vanishing eigenvalue
- ► pure E modes are given by eigenfunctions of ∇⁴ which verifies the Dirichlet and Neumann boundary conditions

Complete sky coverage

► Polarized fields decomposed into *E* and *B* modes : $\mathbf{P} = \mathbf{D}_E \Psi_E + \mathbf{D}_B \Psi_B$

► Apply the
$$\mathbf{D}_{E(B)}^{\dagger}$$
 to \mathbf{P} : $\mathbf{D}_{E}^{\dagger}\mathbf{P} = \mathbf{D}_{E}^{\dagger}\mathbf{D}_{E}\Psi_{E}$ and
 $\mathbf{D}_{B}^{\dagger}\mathbf{P} = \mathbf{D}_{B}^{\dagger}\mathbf{D}_{B}\Psi_{B}$
because $\mathbf{D}_{E}^{\dagger}\mathbf{D}_{B} = \mathbf{D}_{B}^{\dagger}\mathbf{D}_{E} = 0$

Incomplete sky coverage

- ► Polarized fields decomposed into pure *E*, pure *B* and ambiguous modes : **P** = **D**_EΨ_E + **D**_BΨ_B + **P**_a
- ► Apply the $\mathbf{D}_{E(B)}^{\dagger}$ to \mathbf{P} : $\mathbf{D}_{E}^{\dagger}\mathbf{P} = \mathbf{D}_{E}^{\dagger}\mathbf{D}_{E}\Psi_{E}$ and $\mathbf{D}_{B}^{\dagger}\mathbf{P} = \mathbf{D}_{B}^{\dagger}\mathbf{D}_{B}\Psi_{B}$ because $\mathbf{D}_{E}^{\dagger}\mathbf{D}_{B} = \mathbf{D}_{B}^{\dagger}\mathbf{D}_{E} = 0$ and $\mathbf{D}_{E}^{\dagger}\mathbf{P}_{a} = \mathbf{D}_{B}^{\dagger}\mathbf{P}_{a} = 0$ by construction

Sac

Searching for $\Psi_{E(B)}$ fields • $Q + iU = \eth\eth(\Psi_E + i\Psi_B)$ and $Q - iU = \eth\eth\eth(\Psi_E - i\Psi_B)$ $2\Psi_E = \eth\eth(Q + iU) + \eth\eth(Q - iU) = -2\sum \sqrt{\frac{(I-2)!}{(I+2)!}}a_{Im}^E Y_{Im}$ $2\Psi_B = -i\eth\eth(Q + iU) + i\eth\eth(Q - iU) = -2\sum \sqrt{\frac{(I-2)!}{(I+2)!}}a_{Im}^B Y_{Im}$

Working with Ψ fields

- If Ψ fields are measured, the *EB* mixing is completely removed
- ▶ If Stokes parameters are measured, then taking derivatives of pixelised maps leads to (controled) *EB* mixing and to noise with a very blue spectrum $N_{\ell} \propto \ell^4$

Jac.

The origin of E mode into B mode

► the *B* multipole is the inner product of pure *B* mode spherical harmonics with polarization fields :

$$\tilde{a}^B_{lm} = \int d\vec{n} W(\vec{n}) \mathbf{D}^{\dagger}_B Y^{\dagger}_{lm} \cdot \mathbf{P}$$

• **P** is decomposed into pure E, pure B and ambiguous modes :

$$\tilde{a}_{lm}^{B} = \underbrace{\int d\vec{n}W(\vec{n})\mathbf{D}_{B}^{\dagger}Y_{lm}^{\dagger}\cdot\mathbf{D}_{E}\Psi_{E}}_{=0} + \underbrace{\int d\vec{n}W(\vec{n})\mathbf{D}_{B}^{\dagger}Y_{lm}^{\dagger}\cdot\mathbf{D}_{B}\Psi_{B}}_{\neq0} + \underbrace{\int d\vec{n}W(\vec{n})\mathbf{D}_{B}^{\dagger}Y_{lm}^{\dagger}\cdot\mathbf{P}_{a}}_{\neq0}$$

(ロ) (同) (三) (三) (三) (0) (0)

Use a pure B spherical harmonics on the incomplete sky

New definition of the multipole estimators :

$$\tilde{a}^B_{lm} = \int d\vec{n} \mathbf{D}^{\dagger}_B (W imes Y^{\dagger}_{lm}) \cdot \mathbf{P}$$

with \dot{W} satisfying **Dirichlet and Neuman** boundary conditions

▶ **P** is decomposed into pure *E*, pure *B* and ambiguous modes :

$$\tilde{a}_{lm}^{B} = \underbrace{\int d\vec{n} \mathbf{D}_{B}^{\dagger}(WY_{lm}^{\dagger}) \cdot \mathbf{D}_{E} \Psi_{E}}_{=0} \\ + \underbrace{\int d\vec{n} \mathbf{D}_{B}^{\dagger}(WY_{lm}^{\dagger}) \cdot \mathbf{D}_{B} \Psi_{B}}_{\neq 0} \\ + \underbrace{\int d\vec{n} \mathbf{D}_{B}^{\dagger}(WY_{lm}^{\dagger}) \cdot \mathbf{P}_{a}}_{=0} \\ = 0$$

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform white noise

< ロ > < 母 > < 三 > < 三 > < 三 > < つ < ぐ へ つ > <

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform white noise

Filtering the ambiguous modes: some results

Spherical cap of 13° with uniform noise (left) or inhomogeneous noise (right)

Filtering the ambiguous modes: with optimized window function

EBEx type experiment with homogeneous uncorrelated noise: aliased power

Filtering the ambiguous modes: with optimized window function

EBEx type experiment with homogeneous uncorrelated noise: error bars

(ロ) (母) (言) (言) 言) の(()