Transport des rayons cosmiques I - composante Galactique

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Principle of CR transport

- Link the **observed** CR characteristics to the CR characteristics **at the source**
- The CRs are affected while they propagate in the interstellar medium
 - arrival directions
 - composition

- all combined...
- energy spectrum

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Nuclear interactions

Nuclear interactions

Coulombian energy losses

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Energy losses

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

CR transport in the Galactic box

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

 $\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$

"i" represents a given nuclear type

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

 $\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$

"i" represents a given nuclear type

 $\frac{N_i(E,t)}{\tau_{\rm esc}(E)}$

NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) –

$$\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$$

"i" represents a given nuclear type

 $\frac{\frac{N_i(E,t)}{\tau_{\rm esc}(E)}}{\frac{N_i(E,t)}{\tau_{\rm dec}\sqrt{1-\frac{v_i^2(E)}{c^2}}}}$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

$$\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$$

"i" represents a given nuclear type

 $\frac{\frac{N_i(E,t)}{\tau_{\rm esc}(E)}}{\frac{N_i(E,t)}{\tau_{\rm dec}\sqrt{1-\frac{v_i^2(E)}{c^2}}}}$

 $-N_i(E,t)v_i(E) \times [\sigma_{pi}(E)n_{\rm H} + \sigma_{\alpha i}(E)n_{\rm He}]$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

$$\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$$

"i" represents a given nuclear type

 $\frac{-\frac{N_i(E,t)}{\tau_{\rm esc}(E)}}{N_i(E,t)}$ $-\frac{1}{\tau_{\rm dec}\sqrt{1-\frac{v_i^2(E)}{c^2}}}$

 $-N_i(E,t)v_i(E) \times [\sigma_{pi}(E)n_{\rm H} + \sigma_{\alpha i}(E)n_{\rm He}]$ + $\sum_j \int_0^\infty \mathrm{d}E' v_j(E')N_j(E',t)[\sigma_{pji}(E,E')n_{\rm H} + \sigma_{\alpha ji}(E,E')n_{\rm He}]$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

$$\frac{\partial}{\partial t}N_i(E,t) + \frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,t)) = Q_i(E,t)$$

"i" represents a given nuclear type

 $\frac{-\frac{N_i(E,t)}{\tau_{\rm esc}(E)}}{\frac{N_i(E,t)}{\tau_{\rm dec}\sqrt{1-\frac{v_i^2(E)}{c^2}}}}$

 $-N_{i}(E,t)v_{i}(E) \times [\sigma_{pi}(E)n_{\rm H} + \sigma_{\alpha i}(E)n_{\rm He}]$ + $\sum_{j} \int_{0}^{\infty} dE'v_{j}(E')N_{j}(E',t)[\sigma_{pji}(E,E')n_{\rm H} + \sigma_{\alpha ji}(E,E')n_{\rm He}]$ + $\frac{1}{2}\frac{\partial^{2}}{\partial E^{2}}[K(E)N_{i}(E,t)]$

- NPAC / Ast

Steady state

$$\frac{\partial}{\partial t} (E,t) + \frac{\partial}{\partial E} (\dot{E}_{i}(E)N_{i}(E,\mathbf{x})) = Q_{i}(E,\mathbf{x})$$

"i" represents a
given nuclear type

$$-\frac{N_{i}(E,\mathbf{x})}{\tau_{esc}(E)}$$

$$-\frac{N_{i}(E,\mathbf{x})}{\tau_{dec}\sqrt{1 - \frac{v_{i}^{2}(E)}{c^{2}}}}$$

$$-N_{i}(E,t)v_{i}(E) \times [\sigma_{pi}(E)n_{H} + \sigma_{\alpha i}(E)n_{He}]$$

$$+\sum_{j} \int_{0}^{\infty} dE'v_{j}(E')N_{j}(E',t)[\sigma_{pji}(E,E')n_{H} + \sigma_{\alpha ji}(E,E')n_{He}]$$

$$+\frac{1}{2}\frac{\partial^{2}}{\partial E^{2}}[K(E)N_{i}(E,t)]$$
2007

- NPAC / Ast

Steady state

 $\frac{\partial}{\partial E}(\dot{E}_i(E)N_i(E,\mathbf{x})) = Q_i(E,\mathbf{x})$ "i" represents a given nuclear type

 $\tau_{dec} \sqrt{1 - \frac{v_i(E)}{c^2}} -N_i(E,t)v_i(E) \times [\sigma_{pi}(E)n_{\rm H} + \sigma_{\alpha i}(E)n_{\rm He}] + \sum_j \int_0^\infty dE' v_j(E')N_j(E',t)[\sigma_{pji}(E,E')n_{\rm H} + \sigma_{\alpha ji}(E,E')n_{\rm He}] + \frac{1}{2\partial E} \underbrace{\frac{\partial^2}{\partial E}[K(E)N_i(E,t)]}_{2007}$

 $N_i(E, \mathbf{X})$

- NPAC / Ast

Diffusive approximation...

Re-acceleration...

$$+\frac{1}{2}\frac{\partial^2}{\partial E^2} \Big[c(\mathbf{r}, E) N_i(\mathbf{r}, E, t) \Big]$$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

secondary/primary ratios

[Strong & Moskalenko (2001)]

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Cosmic-ray clocks

■ ${}^{12}C + H \rightarrow {}^{9}Be$ (stable secondary nucleus) ${}^{12}C + H \rightarrow {}^{10}Be$ (unstable secondary nucleus: ~ 4 Myr)

- The ¹⁰Be/⁹Be ratio depends on the history of secondary nuclei production (on cross sections)
- Link between time and the quantity of matter gone through

[+ ²⁶Al, ³⁶Cl, ⁵³Mn, ⁵⁴Mn, ⁵⁹N]

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Result of propagation studies

- All observations can be reproduced!
- With very few parameters:
 - Energy losses given by physics
 - Measured cross sections
 - Escape depends on diffusion coefficient D(E)
 - Self-consistent re-acceleration
- Best fit : $D(E) \propto E^{0.36} \sim E^{1/3}$ (Kolmogorov) ?
- Source spectrum in p^{-2.35}

Result of propagation studies

Secondary/primary ratios

 \Rightarrow on average, CRs have gone through a grammage of $X_{RC} = 6 - 10 \text{ g/cm}^2$ from their sources to the Earth

Cosmic-ray clocks

 \Rightarrow CRs have spent typically $\tau_{RC} \sim 2 \ 10^7 \ years$ on their way

- Thus, they propagated in a medium of average density $\mathbf{n} = X_{RC}/c\tau_{RC} \sim 0.2$ part. cm⁻³
- Thus, they must have spent quite some time in the halo! ($H_{halo} \sim 3-7$ kpc)

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Cosmic-ray clocks

halo height

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Cosmic-ray energetics

 1.8 eV/cm³ in (15 kpc × 15 kpc × 10 kpc), renewed every 2 10⁷ years

 \Rightarrow 2.8 × 10⁴¹ erg/s

■ 1 SN of 10⁵¹ erg every 30 years

 \Rightarrow 10⁴² erg/s

 \Rightarrow 25–30% of the SN energy goes to cosmic-rays

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

- Cosmic-rays transport must be understood to relate "source CRs" to "propagated CRs"
- Transport in all 3 "spectral dimensions"
- Trajectories, composition and energies are entangled:
 ⇒ treat them all in the same model
- There are **many observables**... and they can be accounted for within simple models
- ⇒ low-energy CR phenomenology is rather successful

Can we do better? Should we?

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Search for dark matter: anti-p, anti-D, e+, y

positron fraction: $e^{+}/(e^{-} + e^{+})$

better fits with a SUSY signal $(\chi^2/d.o.f. = 1.34 \text{ and } 1.38 \text{ instead of } 2.33 \text{ with the background CRs alone})$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Search for dark matter: anti-p, anti-D, e+, y

positron fraction: $e^{+}/(e^{-} + e^{+})$

better fits with a SUSY signal $(\chi^2/d.o.f. = 1.34 \text{ and } 1.38 \text{ instead of } 2.33 \text{ with the background CRs alone})$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

CR transport and Galactic confinement

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Steady state

$$\frac{\partial}{\partial t} (E,t) + \frac{\partial}{\partial E} (\dot{E}_{i}(E)N_{i}(E,\mathbf{x})) = Q_{i}(E,\mathbf{x})$$

"i" represents a
given nuclear type

$$-\frac{N_{i}(E,\mathbf{x})}{\tau_{esc}(E)}$$

$$-\frac{N_{i}(E,\mathbf{x})}{\tau_{dec}\sqrt{1 - \frac{v_{i}^{2}(E)}{c^{2}}}}$$

$$-N_{i}(E,t)v_{i}(E) \times [\sigma_{pi}(E)n_{H} + \sigma_{\alpha i}(E)n_{He}]$$

$$+\sum_{j} \int_{0}^{\infty} dE'v_{j}(E')N_{j}(E',t)[\sigma_{pji}(E,E')n_{H} + \sigma_{\alpha ji}(E,E')n_{He}]$$

$$+\frac{1}{2}\frac{\partial^{2}}{\partial E^{2}}[K(E)N_{i}(E,t)]$$
2007

- NPAC / Ast

Steady state + high energy (> 10 GeV/n)

Steady state + high energy

$$Q_i(E) - \frac{N_i(E)}{\tau_{\mathrm{esc},i}(E)} = 0$$

Solution (sic!)

$$N_i(E) = Q_i(E) imes au_{ ext{esc},i}(E)$$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Simple model: slope steepening

• Confinement time of cosmic rays of energy E: $\tau_{conf}(E) \propto E^{-\alpha}$

Injection rate in the whole Galaxy:

 $Q(E) \propto E^{-x}$

Resulting number in the Galaxy (steady-state)

 $N(E) = Q(E) \times \tau_{\text{conf}}(E) \propto E^{-(x+\alpha)}$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

2007-2008

slope steepening

Energy losses

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Energy losses + escape

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

- CR confinement time: $\tau_{conf}(E) \propto E^{-\alpha}$
- Injection rate in the whole Galaxy: $Q(E) \propto E^{-x}$
- "propagated spectrum": $N(E) \propto E^{-(x+\alpha)}$

- CR confinement time: $\tau_{conf}(E) \propto E^{-\alpha}$
- Injection rate in the whole Galaxy: $Q(E) \propto E^{-x}$
- "propagated spectrum": $N(E) \propto E^{-(x+\alpha)}$
- We need to have: $x + \alpha \simeq 2.7$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

- CR confinement time: $\tau_{conf}(E) \propto E^{-\alpha}$
- Injection rate in the whole Galaxy: $Q(E) \propto E^{-x}$
- "propagated spectrum": $N(E) \propto E^{-(x+\alpha)}$
- We need to have: x+α ≃ 2.7
 Naive box model: τ_{conf}(E) ≃ H²/D(E) → D(E) ∝ E^α

- CR confinement time: $\tau_{conf}(E) \propto E^{-\alpha}$
- Injection rate in the whole Galaxy: $Q(E) \propto E^{-x}$
- "propagated spectrum": $N(E) \propto E^{-(x+\alpha)}$
- We need to have: $x + \alpha \simeq 2.7$ • Naive box model: $\tau_{conf}(E) \simeq \frac{H^2}{D(E)} \longrightarrow D(E) \propto E^{\alpha}$

NB: "Best fit" from secondary/primary studies:

 $x \simeq 2.35$ $\alpha \simeq 0.36$

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -

Final notes

- Beware: all energetic particles (EPs) are not CRs...
- EP sources are known, but their phenomenology is often uncertain: more work is needed, obs. and theory, multimessenger approach...
- Global CR phenomenology is not particularly problematic, but the sources are unknown (100 years after their discovery!)
- Secondary particles are extremely important: photons (nonthermal astronomy! + diffuse backgrounds!), nuclei (LiBeB nucleosynthesis!), neutrinos, etc.
- Magnetic fields isotropize the CRs, and mix all sources... except at very high E!
- CRs at low E are Galactic (GCRs), while CRs at high E are extragalactic (EGCRs): the GCR/EGCR transition is a key!

- NPAC / Astrophysique des particules / E. Parizot (Univ. Paris 7 / APC) -