Cosmologie Moderne Cours 12

J.-Ch. Hamilton, APC hamilton@apc.univ-paris7.fr

J.-Ch. Hamilton - Université Ouverte 2013

Plan du cours

• Vue d'ensemble de la cosmologie

- ★ Échelles
- ★ Les pilliers de la cosmologie
- ★ L'Univers de Friedman-Lemaître
- ★ Histoire thermique de l'Univers

La cosmologie observationnelle aujourd'hui

- ★ Distances en cosmologie
- \star La formation des structures
- ★ Tests cosmologiques (SNIa, CMB et les autres...)
- ★ Arguments pour la matière et l'énergie noires

• Le futur de la cosmologie

- \star L'inflation
- ★ Univers primordial
- ★ Multivers ?

Plan du cours

• Vue d'ensemble de la cosmologie

- ★ Échelles
- ★ Les pilliers de la cosmologie
- ★ L'Univers de Friedman-Lemaître
- ★ Histoire thermique de l'Univers

La cosmologie observationnelle aujourd'hui

- ★ Distances en cosmologie
- \star La formation des structures
- ★ Tests cosmologiques (SNIa, CMB et les autres...)
- ★ Arguments pour la matière et l'énergie noires

• Le futur de la cosmologie

- \star L'inflation
- ★ Univers primordial
- \star Multivers ?

Formation des structures

Idée générale

 t_0

Difficulté: La gravitation n'est pas linéaire... donc cette description va avoir ses limites

http://www.apc.univ-paris7.fr/~hamilton/JCHweb/Cosmologie_Moderne.html

 $t_1 > t_0$

Évolution linéaire

Cas général: facteur de croissance

I.-Ch. Hamilt

Les structures observées aujourd'hui demanderaient un trop **fort contraste à grand z** (croissance lente)

E(z

avec

Les structures observées aujourd'hui demanderaient un trop faible contraste à grand z (croissance rapide)

Évolution linéaire

Ère	a(t)	growing mode	decaying mode
Rayonnement	$a(t) \propto t^{1/2}$	$D_g(t) \propto t$ $D_g(t) \propto a^2$	$D_d(t) \propto {\rm const}$
Matière	$a(t) \propto t^{2/3}$	$D_g(t) = t^{2/3}$ $D_g(t) \propto a$	$D_d(t) = t^{-1}$
Constante cosmologique	$a(t) \propto \exp(Ht)$	$D_g(t) \propto \text{const}$	$D_d(t) \propto \exp(-2Ht)$

Les structures ne croissent significativement que pendant la domination de la matière

Comparaison avec les simus. N-corps

J.-Ch. Hamilton - Université Ouverte 2014

Description statistique

contraste de densité : $\delta(\vec{x}) = \frac{\rho(\vec{x}) - \rho_0}{\delta(\vec{x})}$

Fonction de corrélation à deux points:

 $\xi(\vec{r}) = \langle \delta(\vec{x})\delta(\vec{x} - \vec{r}) \rangle$

Dans l'espace de Fourier:

$$\tilde{\delta}(\vec{k}) = \int \delta(\vec{x}) \exp(-i\vec{k}\cdot\vec{x}) \mathrm{d}\vec{x}$$

modes de moyenne nulle et de variance donnée par le spectre de puissance

$$\left\langle \tilde{\delta}(\vec{k_1})\tilde{\delta}^*(\vec{k_2}) \right\rangle = (2\pi)^3 \delta_D(\vec{k_1} - \vec{k_2})P(\vec{k_1})$$

$$P(\vec{k}) = \frac{1}{(2\pi)^3} \int \xi(\vec{x}) \exp(-i\vec{k}\cdot\vec{x}) d\vec{x}$$

J.-Ch. Hamilton - Université Ouverte 2014

Spectre de puissance évolué

J.-Ch. Hamilton - Université Ouverte 2014

Mesures de P(k)

Plan du cours

• Vue d'ensemble de la cosmologie

- ★ Échelles
- ★ Les pilliers de la cosmologie
- ★ L'Univers de Friedman-Lemaître
- ★ Histoire thermique de l'Univers

La cosmologie observationnelle aujourd'hui

- ★ Distances en cosmologie
- \star La formation des structures
- ★ La matière noire
- ★ Tests cosmologiques (SNIa, CMB et les autres...)

• Le futur de la cosmologie

- \star L'inflation
- ★ Univers primordial
- \star Multivers ?

Matière noire

• Pourquoi ?

- ★ Dynamique des amas
- ★ Courbes de rotation des galaxies
- \star Formation des structures et fond diffus

Quels candidats ?

- ★ Objets compacts
- ★ Particules «exotiques»
- ★ Modification de la gravité

Le Bullet Cluster

Dynamique des amas

Fritz Zwicky (1933)

- ★ Amas de Coma
 - 2000 galaxies
 - vitesse ~ 300 km/s
 - rayon ~ qques Mpc
- ★ Mesure des vitesses
 - ightarrow Énergie cinétique $E_c = \frac{1}{2}mv^2$
- ★ Mesure des distances entre galaxies
 - \Rightarrow Énergie potentielle $E_p = -G \frac{m^2}{r}$
- ★ Équilibre dynamique (Viriel)
 - $E_p = -2E_c$
 - **Estimation de la masse** $m \propto r \times v^2$
- ➡ 100 à 500 fois la masse stellaire

Matière noire !

J.-Ch. Hamilton - Université Ouverte 2014

Emission X des amas

Plus récent (80's)

La matière visible s'étend beaucoup plus loin que les étoiles

- Gaz chaud (~10⁷-10⁸ K)
 - ★ à l'équilibre hydrostatique dans le champ gravitationnel
 - ★ On peut déterminer la masse totale
- Gaz ~ le double de la matière visible en masse
- Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz !

Image optique SDSS

Amas Abell 2029

Emission X des amas

Plus récent (80's)

- La matière visible s'étend beaucoup plus loin que les étoiles
- Gaz chaud (~10⁷-10⁸ K)
 - ★ à l'équilibre hydrostatique dans le champ gravitationnel
 - ★ On peut déterminer la masse totale
- Gaz ~ le double de la matière visible en masse
- Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz !

Amas Abell 2029

Image X Chandra

Emission X des amas

Plus récent (80's)

- La matière visible s'étend beaucoup plus loin que les étoiles
 - Gaz chaud (~10⁷-10⁸ K)
 - ★ à l'équilibre hydrostatique dans le champ gravitationnel
 - ★ On peut déterminer la masse totale
 - Gaz ~ le double de la matière visible en masse
- Il faut de la matière noire (~ 85 %) pour chauffer suffisamment le gaz !

Amas Abell 2029

Image X Chandra

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - ★ Mirages gravitationnels (arcs, images multiples)
 - ★ Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

©Yannick Mellier (IAP)

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - ★ Mirages gravitationnels (arcs, images multiples)
 - ★ Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

Lentillage gravitationnel

- La masse courbe l'espace-temps ★ Le trajet des photons est défléchi par la masse

 Un amas très massif va déformer les images des objets d'arrière-plan
 - ★ Mirages gravitationnels (arcs, images multiples)
 - ★ Lentillage faible : déformation légère des galaxies d'arrière plan
 - Ellipticité et orientations systématiques

Possibilité de reconstruire le potentiel gravitationnel de l'amas

Amas de galaxies Abell 1689 (HST)

Reconstruction du potentiel gravitationnel

Mauve : masse noire reconstruite par lentillage faible

Résultat : matière noire systématiquement majoritaire !

Image visible (Galaxies)

J.-Ch. Hamilton - Université Ouverte 2014

Contours de weak lensing (masse)

J.-Ch. Hamilton - Université Ouverte 2014

Visible : Galaxies

Lensing : masse

X : Gaz

«Bullet Cluster»

- collision de deux amas
- Les galaxies et la matière noire sont non collisionnelles
 ★ Elles passent «sans se voir»
- Le gaz est collisionnel
 Il reste au centre, s'échauffe et des ondes de choc apparaîssent
- C'est l'argument le plus fort en faveur de la matière noire

Simulation Chandra

«Bullet Cluster»

- collision de deux amas
- Les galaxies et la matière noire sont non collisionnelles
 ★ Elles passent «sans se voir»
- Le gaz est collisionnel
 Il reste au centre, s'échauffe et des ondes de choc apparaîssent
- C'est l'argument le plus fort en faveur de la matière noire

Simulation Chandra

Mais ! il existe un contre-exemple...

Abell 520 z=0.02 [Mahdavi et al. 2007]

Le coeur de matière noire coïncide avec le gaz, pas avec les galaxies...

Semble pouvoir s'expliquer par la présence d'un filament de manière noire dans la ligne de visée [Girardi et al., arXiv: 0809.3139]

J.-Ch. Hamilton - Université Ouverte 2014

Matière noire Galactique

Matière noire Galactique

Vitesse de rotation typique des étoiles : 200 km/s

Le profil de vitesse permet

de reconstruire la masse !

J.-Ch. H

mesure de vitesses dans la Galaxie M33 (galaxie du triangle)

Radio

Doppler Hydrogène

Profil de vitesse et masse interne

 v^2

Principe fondamental de la dynamique:

 $\frac{GMm}{r^2}$

• Orbite circulaire:

$$\Rightarrow \frac{GM}{r^2} = a$$

$$\frac{v^2}{r^2} = \sqrt{GMr^2}$$

 $\left|\frac{GM}{M}\right|$

$$\sqrt{M_{\text{interne}}} = \text{Cte} \Rightarrow \propto 1/\sqrt{r}$$

$$M_{\rm interne} \propto r^3 \Rightarrow \propto r$$

 $\Rightarrow v = 1$

J.-Ch. Hamilton - Université Ouverte 2014

Halo de matière noire

 La masse d'une galaxie s'étend bien plus loin que sa masse stellaire visible

 Il existe un halo de matière noire autour
 ★ Jusqu'à ~ 200 kpc
 ★ rapport Masse/Luminosité ~ 200

Halo de matière noire

 La masse d'une galaxie s'étend bien plus loin que sa masse stellaire visible

 Il existe un halo de matière noire autour
 ★ Jusqu'à ~ 200 kpc
 ★ rapport Masse/Luminosité ~ 200

Formation des structures et matière noire

- Les anisotropies initiales sont très faibles
 - ★ Fond diffus cosmologique : 3 K et fluctuations ~ 30 mK
 - ★ Fluctuations primordiales ~ 1/100 000

• Effondrement de la matière ordinaire

- ★ commence à l'égalité matière-rayonnement
- ★ Ensuite l'expansion freine la contraction

Pour que cela fonctionne il faut:

- ★ Plus de matière pour expliquer tant d'effondrement
- Une matière qui ait commencé à s'effondrer avant l'égalité matière-rayonnement
- Des particules assez peu rapides (donc lourdes) pour ne pas s'échapper trop vite (et gommer les structures effondrées)

Il faut de la matière noire «froide» (CDM) J.-Ch. Hamilton - Université Ouverte 2014

HDM

MDM

CDM

Formation des structures et matière noire

- Les anisotropies initiales sont très faibles
 - ★ Fond diffus cosmologique : 3 K et fluctuations ~ 30 mK
 - ★ Fluctuations primordiales ~ 1/100 000

• Effondrement de la matière ordinaire

- ★ commence à l'égalité matière-rayonnement
- ★ Ensuite l'expansion freine la contraction

Pour que cela fonctionne il faut:

- ★ Plus de matière pour expliquer tant d'effondrement
- Une matière qui ait commencé à s'effondrer avant l'égalité matière-rayonnement
- Des particules assez peu rapides (donc lourdes) pour ne pas s'échapper trop vite (et gommer les structures effondrées)

Il faut de la matière noire «froide» (CDM) J.-Ch. Hamilton - Université Ouverte 2014

HDM

MDM

CDM

Oscillations acoustiques de baryons

BAO:

• Oscillations acoustiques:

- entre l'égalité matière-rayonnement et le découplage
- Propagation d'une onde sonore
- s'arrête au découplage
- Observé dans le CMB

Aujourd'hui:

- Chaque excès de matière est entouré d'un excès sphérique à 150 Mpc (110 h⁻¹ Mpc)
- Les galaxies se forment là de préférence
 Pic dans la fonction de corrélation à deux points de la matière
- étalon standard pour les mesures de distances

Signification:

J.-Ch. Hamilton - Université Ouverte 2014

- Prediction confirmée ! juste là ou il fallait !
- Une des preuves les plus convaincantes pour $\Omega_m=0.3$ et pour la présence de matière noire

Oscillations acoustiques de baryons

BAO:

• Oscillations acoustiques:

- entre l'égalité matière-rayonnement et le découplage
- Propagation d'une onde sonore
- s'arrête au découplage
- Observé dans le CMB

Aujourd'hui:

- Chaque excès de matière est entouré d'un excès sphérique à 150 Mpc (110 h⁻¹ Mpc)
- Les galaxies se forment là de préférence
 Pic dans la fonction de corrélation à deux points de la matière
- étalon standard pour les mesures de distances

Signification:

J.-Ch. Hamilton - Université Ouverte 2014

- Prediction confirmée ! juste là ou il fallait !
- Une des preuves les plus convaincantes pour $\Omega_m=0.3$ et pour la présence de matière noire

BAO et matière noire

C'est à mon sens la plus forte indication de l'existence de matière noire

