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Evolution of SuperNova Remnants

the free-expansion phase ends when: M; = Mg,

uniform medium with density: Ogas ~ 1.7 x 107> g
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duration of the free expansion phase: ¢t ~ ~ 200 ( ej) yT
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Mgy >> Mc; -5 the shock slows down

we want to find a relation between Rs and t

let's start by considering the shock heating of the gas

3
kpTo = 6 mu? > 1 keV

much longer than

cooling time
g 106 VT <  the SNR agel

\»TCOCT% >

Y

SNRs emit X-rays

the SNR in this phase conserves the total energy!
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Evolution of SuperNova Remnants

Mgy >> Mc; -5 the shock slows down
we want to find a relation between Rs and t

the only relevant physical quantities are: /sy and 0Qgas

FEon\ t
R

we can built a non dimensional quantity -> (
Ogas
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Evolution of SuperNova Remnants

I Sedov solution '

RS%<ESN>5?€§ b — dR, N g(ESN>5t_§
Ogas d¢ 3 Ogas
(i)
R, ~ 4.5 pc
Esy = 10°! erg 1000 yr

Ngas = 1 cm
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Evolution of SuperNova Remnants

duration of the Sedov phase

taged USOCt_%s T2O<U§% TCO(TQ%%

when tqge ~ Te -> radiative losses become important

this happens at tage ~ O X 10* yr

R ~ 20 pc
0" 2 200 km /s



CR acceleration at SuperNova Remnants
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CR acceleration at SuperNova Remnants

1
Lecr = 1 <_ Ogas U?) (47TR§) erg/s
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CR acceleration at SuperNova Remnants

1
/ Lcr ;U <_ Ogas U§> (47TR§) erg/s

CR power \ \
CR acceleration shock surface
efficiency energy flux
3 2 2 Log
Lop ox v, R, o<t
free expansion phase
x t7!

Sedov phase q

200 yr t

CRs are mainly accelerated at the transition between
free expansion and Sedov phase




CR acceleration at SuperNova Remnants
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RXJ1713 does not look like a PeVatron...

We would like SNRs to be CR PeVatrons...

RXJ1713 data from HESS

. e "7 | ...but RXJ1713
Underlying proton [ ] is notlll
spectrum E-? with
exponential cutoff % ,

@150 TeV S - | o
o
l > QQ o
_ : 0
10-12 MR T BT WY Y B \b
0.1 1 10 100
E [TeV]

Gabici, 2008
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Can SNRs accelerate CRs

up to the knee?

diffusion length

D
g = —
Us

acceleration time

D
tacc - _2
/‘ US

maximum CR energy determined by:

D

D
e e =D <t fl= 2 < n,




Magnetic field amplification at shocks

A | WARNING! This would require a long discussion '

the ISM magnetic field (diffusion coefficient) is too weak (large) to accelerate CRs

at SNR shocks...

theoreticians believe that CRs can excite magnetic turbulence at shocks while being
accelerated -> MAGNETIC FIELD AMPLIFICATION

X-ray astronomers obtained quite convincing evidence for this fact, and measured
maghetic field strength up to ~100 pG + 1 m6 (1)

theoreticians think that, in the (very) turbulent amplified field the diffusion

coefficient is the Bohm diffusion coefficient:
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SNRs accelerate CRs

Can
up to the knee?
(1) Free expansion phase
t = D < 1
acc T o age
Us ﬁ R. — vt the two conditions
, D < R ’ e are equivalent
d — v, S
D(Emaa:)
— tage




Can SNRs accelerate CRs
up to the knee?

(1) Free expansion phase

D < 1 ﬁ

9 age

Us . the two conditions
Rs — Vs tage .

D are equivalent

Us
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Can SNRs accelerate CRs
up to the knee?

(2) Sedov phase

D

2 < lage :
Us most stringent
D 2 ___—  constrain
vs

t—Oé

tCLCC

N b
DO Emaa: D(Ema,a:) _ Rs Emax X B Vg RS

B vy Vg

Erar X tage the maximum energy decreases with time



Can SNRs accelerate CRs
up to the knee?

Ema:c A

very uncertain




Can SNRs accelerate CRs
up to the knee?

very uncertain




Can SNRs accelerate CRs
up to the knee?

very uncertain




Can SNRs accelerate CRs
up to the knee?

very uncertain

X tgge

DB (Emaaz)
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VFE
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Particle escape from SNRs .. &40
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d is basically unknown

Emax A / pr‘ﬁC|€S with E>qux
(accelerated at t<tqge)

escape the SNR

| no particle escape '
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This is a supernova remnant

RXJ1713 WAS a CR PeVatron
PeV particles are accelerated at
the beginning of Sedov phase

(~200yrs), when the shock speed is
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Particle escape from SNRs ... .50 z8

This is a supernova remnant

RXJ1713 WAS a CR PeVatron

PeV particles are accelerated at
the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
slows down

Highest energy particles are
released first, and particles with
lower and lower energy are
progressively released later

a SNR is a PeVatron for a very
short time

still no evidence for the
existence of escaping CRs
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Injection spectrum of CRs from SNRs

Which CR spectrum is injected by a SNR during the whole Sedov phase?

unknown
particles are released in the ISM at a time: Eoxt™®

CRs are accelerated at a rate: Logr t—1

assumption: a constant fraction of Lcr escape the SNR

,dt
d€cp oy < Lop dt oct™'dt «x E5 — dF < E~'dFE

dE

décr TS M

Ncr(E) %E x B2




Summarizing:

SNRs are good candidate sources for CRs because:

they can provide the right amount of energy in form of CRs (if
~10% efficiency)

they inject CRs in the ISM with (roughly) the spectrum needed
to explain CR observations (~ E-2)

they can accelerate CRs (at least) up to the energy of the CR
knee (~5 x 10'° eV)



Further
Gamma-Ray based Tests
for Cosmic Ray Origin



TeV emission from SNRs:
a test for CR origin

* RXJ1713 as seen by HESS

100

mff\

Q%;?'f D | Test passed! '

This is still not a conclusive proof -> hadronic or leptonic emission?



Test (0): neutrinos

Good thing: Detection of neutrinos = hadronic interactions
Bad thing: Neutrino telescopes have a very poor sensitivity...

Thus: we'd better search for gamma-ray-based tests!



Hadronic versus leptonic emission

X-ray synchrotron emission is observed from some TeV SNRs
(RXJ1713, Vela Junior...)

A

E2 F(E) \
relativistic /

electrons are

present at the
shock

X-rays gamma-rays



Hadronic versus leptonic emission

X-ray synchrotron emission is observed from some TeV SNRs
(RXJ1713, Vela Junior...)

A
E2 F(E) \
relativistic / the same electrons
electrons are that emit the
present at the \ “— synchrotron also emit
shock inverse Compton gamma
rays
>

X-rays gamma-rays



Hadronic versus leptonic emission

X-ray synchrotron emission is observed from some TeV SNRs
(RXJ1713, Vela Junior...)

A
E2 F(E) \
relativistic / the same electrons
electrons are that emit the
present at the \ “— synchrotron also emit
shock inverse Compton gamma
rays
>
X-rays gamma-rays
synchrotron -> F', neBB inverse Compton -> Fro NeWso ft

this product is fixed by X-ray obs. we know this /



Hadronic versus leptonic emission

X-ray synchrotron emission is observed from some TeV SNRs
(RXJ1713, Vela Junior...)

E2F(E) |

relativistic // weaker B G the same electrons

electrons are that emit the

present at the \ “— synchrotron also emit
shock inverse Compton gamma

stronger B Q s
>

X-rays gamma-rays

synchrotron -> F', neBB inverse Compton -> Fro NeWso ft
this product is fixed by X-ray obs. we know this /
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(1) GeV -> FERMI observation of SNRs

Hadronic: proton spectrum E~ -> p-p interactions -> gamma ray spectrum E=

Leptonic: low B field -> synchrotron losses negligible -> electron spectrum E-2
-> inverse Compton scattering -> gamma ray spectrum E1°
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(1) GeV -> FERMI observation of SNRs

Hadronic: proton spectrum E~ -> p-p interactions -> gamma ray spectrum E=

Leptonic: low B field -> synchrotron losses negligible -> electron spectrum E-2
-> inverse Compton scattering -> gamma ray spectrum E1°

—
v
(7))
N

EGRET

FERMI might finally tell us wether the emission is
hadronic or leptonic... but it won't tell us wether SNRs
are PeVatrons or notlll

.
N
.
.
.
.
N
'l IS

observations

------- Inverse Compton
7° - decay
®  GLAST - hadronic 5 years
A GLAST - leptonic 5 years
—— H.E.S.S.

T IIIIsIIl
N

10'1| | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| [N
108 10° 10'° 10" 10'2 10"

Energy (eV) Funk, 2007




(2) multi-TeV emission from SNRs

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron
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N

the actual behavior depends on gas
density, explosion energy, magnetic field

evolution, diffusion coefficient... Gabici & Aharonian. 2007
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(2) multi-TeV emission from SNRs

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron

Time affer the explosion

t = 2000 yr

/

the actual behavior depends on gas
density, explosion energy, magnetic field
evolution, diffusion coefficient...

1 10 100
E [TeV]

t = 8000 yr

Gabici & Aharonian, 2007



Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission
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Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

can we expect to see a
spectrum like this one
due to inverse Compton?

NO->Klein-Nishina cutoff!
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Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

can we expect to see a
spectrum like this one
due to inverse Compton?

NO->Klein-Nishina cutoff!
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Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

t = 400 yr

hard spectrum up to
~100 TeV, if hadronic
implies the presence of
~PeV Cosmic Rays

=
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can we expect to see a

spectrum like this one 5_ -> PeVatron!
due to inverse Compton? Byo -
NO->Klein-Nishina cutoffl = 3 | |
0.1 1 10
E [TeV]
l Hard spectrum up to >100 TeV -> PeVatron! '
unambiguous evidence of the the emission lasts for a very
fact that SNRs accelerate short time

CRs up to the knee (400 yrs -> <10 SNRs)
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Both SNR and surrounding
molecular clouds emit gammas




The role of Molecular Clouds

Maybe something like that
has been already detected...
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs

t =
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Example: the galactic centre ridge
The galactic centre ridge as seen by HESS

HESS collaboration, 2006



Example: the galactic centre ridge

The galactic centre ridge as seen
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Corrected excess counts
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Example: the galactic centre ridge

CR source

HESS collaboration, 2006



Example: the galactic centre ridge

after a time t4iff CRs fill a
volume like this
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Example: the galactic centre ridge

after a time t4iff CRs fill a
volume like this

CR source
. - ﬁ I:> if we know the age of the source we can
diff =~ estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge

SNR SgrA East ->t ~ 10* yr
(though quite uncertain)

after a time t4iff CRs fill a
volume like this

CR source
. - ﬁ I:> if we know the age of the source we can
diff =~ estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge
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CR source (~10% yr)



Example: the galactic centre ridge
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Example: the galactic centre ridge
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Conclusions

We still don't know which are the sources of galactic CRs;

We have many reasons to believe that SNRs might be the sources of CRs;

A tight connection between CR physics and gamma-ray astronomy exists
(CR+ISM -> Gamma-rays);

Three gamma ray based tests for CR origin:

4 TeV emission from SNRs -> necessary but not sufficient condition

GeV-TeV spectrum of SNRs -> FERMI -> hadronic or leptonic?
) multi-TeV emission from SNRs -> future Cherenkov telescopes (Cherenkov

Telescope Array, TenTen ...) -> PeVatrons!



Thanks!



