Rencontres de Blois Particle Physics and Cosmology

Status of Direct Detection with Noble Liquid Experiments

Davide Franco APC

June, 3rd 2016

Noble liquids around the world

SNOLAD DEAP/CLEAN	N Homestake LUX - LZ	Canfranc ArDM Gran S XENC DarkS	asso N ide Jinpin Panda	kamioka xMASS
Riducial Mass				
FIGUCIAL MASS		xenon	Arg	jon
\leq 0.15 ton	PandaX Xenon100* XMASS LUX	0.4 (0.05) ton 0.16 (0.06) ton 0.8 (0.1) ton 0.25 (0.15) ton	DarkSide-50**	0.15 (0.05) ton
\leq 1 ton	Xenon1T*	3.5 (1) ton	ArDM DEAP-3600	2 (0.5) ton 3.6 (1) ton
\leq 20 ton	LZ XenonNT	10 (5.6) ton 7 (xxx) ton	DarkSide-20k**	30 (20) ton
\leq 100 ton	DARWIN	50(40) ton	ARGO	xxx (100) ton

*See K. Micheneau's talk **See J. Maricic's talk

k 2

The keyword is "complementarity"

	Xenon	Argon
WIMP SI cross section	Sensitive also to low masses	Limited to large masses ($M\chi > 10$ GeV)
WIMP SD cross section	Accessible	Not accessible
Radio-purity	Intrinsically pure	³⁹ Ar contamination (fixed: see next slides)
Temperature	166.4 K	87.2 K (close to nitrogen)
Density	3.1 g/cm ³	1.4 g/cm ³
S1 Pulse Shape Discrimination	Very limited (singlet: ~2 ns; triplet: ~27 ns)	Yes (singlet ~7 ns; triplet ~1600 ns)
Cost and availability	Expensive (~kDollar/kg) Limited world production Hextra costs for underground extraction Abundant	

The Status

Particle discrimination through:

- Accurate 3D **position** identification
- Multiple-scattering rejection
- **S2/S1** ratio
- S1 **PSD** (if available)

S2/S1 Particle Discrimination

Position reconstruction and multiple scatter

Rejection factor $\sim 10^2 - 10^3$

- Improved **PMT response** and light measurement
- Improved calibration
 - electronic recoil (ER): mono energetic sources, and CH3T internal source;
 - nuclear recoil (NR): mono energetic neutrons with in-situ D-D generator

LUX

Single-phase: XMASS

- 832 kg of Lxe (100 kg FV)
- Data taking ~1 year
- 642 2'' PMTs (62% optical coverage)
- Light Yield: 15 pe/keV
- Single phase: no ER discrimination => looking for annual modulations

Intrinsic BG of XMASS I: O(10⁻⁴ DRU) @ 40keV (arXiv: 1401.4737)

Larger size is advantageous for surface background, Kr, and Rn

XMASS: new results

Perspectives in Direct Dark Matter Search

Towards the ton / multi-ton phase

XENON1T

- 3.5 ton => 2.0 ton target mass
- TPC with ~1 m drift length
- ~1 kV/cm drift field
- 248 PMT's (RR11410-21)
- 10 m water tank for neutron shielding and muon veto

Currently in commissioning phase

Data taking soon!

Can be extended to n-tons

Towards the ton/multi-ton phase

XENON1T

Background after 99.75% ER
rejection: 2.08 events/(ton yr)
(in S1 range (3,70) PE):
ERs ~1.6 / (ton yr)
NRs ~0.5 / (ton yr)

Goal: ~1E-47

Towards the ton/multi-ton phase

\mathbf{LZ}

Innovation:

- **Titanium** cryostat (although stainless steel is being evaluated as an option)
- Double veto:
 - Active buffer LXe thanks to PMts between cryostat and TPC
 - External scintillator detector loaded with Gd

Towards the ton/multi-ton phase

LZ

Can we build a background-free experiment?

The Pulse Shape Discrimination in Argon

Rejection factor: 10⁷-10⁸

DEAP-3600

1000 kg fiducial mass Light Yield ~8 pe/keV_{ee}

Data taking on going!

DEAP-3600 Detector

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE)

50 cm light guides + PE shielding provide neutron moderation

Steel Shell immersed in 8 m water shield at SNOLAB

Project <0.6 background in 3 ton-yr, 1E-46 cm² reach

Davide Franco – APC Paris

DarkSide50: LAr dual-phase TPC

Underground Ar:

Naturally shielded against cosmic rays

Rate ~0.7 mBq/kg

Depletion factor ~1400

Liquid Scintillator Veto

- 4 m diameter sphere
- Boron-loaded: 20:1 PC and TMB
- 110 8" PMTs
- LY ~ 500 pe/MeV

99.1% efficiency to veto neutrons from capture alone (AmBe + simulation)

+ neutron thermalization
signal from the
scintillator

DarkSide50: LAr dual-phase TPC

Scaling to a multi-ton LAr detector

³⁹Ar rejection

DarkSide20k: the SiPM option

SiPM Requirements

PDE larger than 40% at 420 nm

Dark count rate (DCR) lower than 1 Hz/mm2

Total correlated noise probability (crosstalk + afterpulsing) lower than 40%

Inactive gap between devices smaller than 200 μm to maximize the tiling efficiency

Photo-electron gain larger than 1M and a signal duration of less than 300 ns

```
Overall surface ~15 m^2
```

```
GOAL: 50% more in light yield
```

URANIA & ARIA

URANIA

Replacement of the Ar extraction plant in Colorado to reach capacity of **100 kg/day** of UAr

ARIA

-350 m distillation column in Seruci mine (Sardinia) for chemical and isotopic purification of UAr

Exploits finite vapor pressure difference between ³⁹Ar/⁴⁰Ar: ³⁹Ar reduction factor of 10 per pass at the rate of **100 kg/day**

Perspectives

ReD and **ARIS** will investigate the effect

- Several technological progresses in the last years
- New robust designs for the next generations
- But still to demonstrate that we can scale the current technology (light propagation? electron lifetime?)

Directionality?

