Geant4-11
G4MagHelicalStepper.icc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4MagHelicalStepper inline methods implementation
27//
28// Created: J.Apostolakis, CERN - 05.11.1998
29// --------------------------------------------------------------------
30
31inline void
32G4MagHelicalStepper::LinearStep( const G4double yIn[],
33 G4double h,
34 G4double yLinear[]) const
35{
36 // Linear Step in regions of no field
37
38 G4double momentum_val = std::sqrt(yIn[3]*yIn[3]+yIn[4]*yIn[4]+yIn[5]*yIn[5]);
39 G4double inv_momentum = 1.0 / momentum_val;
40 G4double yDir[3];
41
42 for( auto i = 0; i < 3; ++i )
43 {
44 yDir[i] = inv_momentum * yIn[i+3];
45 yLinear[i] = yIn[i] + h * yDir[i];
46 yLinear[i+3] = yIn[i+3];
47 }
48}
49
50inline void
51G4MagHelicalStepper::MagFieldEvaluate(const G4double y[],
52 G4ThreeVector& Bfield )
53{
54 G4double B[3];
55 GetEquationOfMotion()->GetFieldValue(y, B);
56 Bfield = G4ThreeVector( B[0], B[1], B[2] );
57}
58
59inline G4double
60G4MagHelicalStepper::GetInverseCurve(const G4double Momentum,
61 const G4double Bmag)
62{
63 constexpr G4double chargeFactor = 1.0 / (CLHEP::eplus*CLHEP::c_light);
64
65 G4double inv_momentum = 1.0 / Momentum ;
66 G4double particleCharge = fPtrMagEqOfMot->FCof() * chargeFactor;
67 G4double fCoefficient = -fUnitConstant * particleCharge * inv_momentum;
68
69 return fCoefficient*Bmag;
70}
71
72inline void G4MagHelicalStepper::SetAngCurve(const G4double Ang)
73{
74 fAngCurve=Ang;
75}
76
77inline G4double G4MagHelicalStepper::GetAngCurve() const
78{
79 return fAngCurve;
80}
81
82inline void G4MagHelicalStepper::SetCurve(const G4double Curve)
83{
84 frCurve=Curve;
85}
86
87inline G4double G4MagHelicalStepper::GetCurve() const
88{
89 return frCurve;
90}
91
92inline void G4MagHelicalStepper::SetRadHelix(const G4double Rad)
93{
94 frHelix=Rad;
95}
96
97inline G4double G4MagHelicalStepper::GetRadHelix() const
98{
99 return frHelix;
100}