RandBinomial.cc

Go to the documentation of this file.
00001 // $Id:$
00002 // -*- C++ -*-
00003 //
00004 // -----------------------------------------------------------------------
00005 //                             HEP Random
00006 //                        --- RandBinomial ---
00007 //                      class implementation file
00008 // -----------------------------------------------------------------------
00009 
00010 // =======================================================================
00011 // John Marraffino - Created: 12th May 1998
00012 // M Fischler     - put and get to/from streams 12/10/04
00013 // M Fischler         - put/get to/from streams uses pairs of ulongs when
00014 //                      + storing doubles avoid problems with precision 
00015 //                      4/14/05
00016 //
00017 // =======================================================================
00018 
00019 #include "CLHEP/Random/RandBinomial.h"
00020 #include "CLHEP/Random/DoubConv.h"
00021 #include <algorithm>    // for min() and max()
00022 #include <cmath>        // for exp()
00023 
00024 namespace CLHEP {
00025 
00026 std::string RandBinomial::name() const {return "RandBinomial";}
00027 HepRandomEngine & RandBinomial::engine() {return *localEngine;}
00028 
00029 RandBinomial::~RandBinomial() {
00030 }
00031 
00032 double RandBinomial::shoot( HepRandomEngine *anEngine, long n,
00033                                                           double p ) {
00034   return genBinomial( anEngine, n, p );
00035 }
00036 
00037 double RandBinomial::shoot( long n, double p ) {
00038   HepRandomEngine *anEngine = HepRandom::getTheEngine();
00039   return genBinomial( anEngine, n, p );
00040 }
00041 
00042 double RandBinomial::fire( long n, double p ) {
00043   return genBinomial( localEngine.get(), n, p );
00044 }
00045 
00046 void RandBinomial::shootArray( const int size, double* vect,
00047                             long n, double p )
00048 {
00049   for( double* v = vect; v != vect+size; ++v )
00050     *v = shoot(n,p);
00051 }
00052 
00053 void RandBinomial::shootArray( HepRandomEngine* anEngine,
00054                             const int size, double* vect,
00055                             long n, double p )
00056 {
00057   for( double* v = vect; v != vect+size; ++v )
00058     *v = shoot(anEngine,n,p);
00059 }
00060 
00061 void RandBinomial::fireArray( const int size, double* vect)
00062 {
00063   for( double* v = vect; v != vect+size; ++v )
00064     *v = fire(defaultN,defaultP);
00065 }
00066 
00067 void RandBinomial::fireArray( const int size, double* vect,
00068                            long n, double p )
00069 {
00070   for( double* v = vect; v != vect+size; ++v )
00071     *v = fire(n,p);
00072 }
00073 
00074 /*************************************************************************
00075  *                                                                       *
00076  *  StirlingCorrection()                                                 *
00077  *                                                                       *
00078  *  Correction term of the Stirling approximation for log(k!)            *
00079  *  (series in 1/k, or table values for small k)                         *
00080  *  with long int parameter k                                            *
00081  *                                                                       *
00082  *************************************************************************
00083  *                                                                       *
00084  * log k! = (k + 1/2)log(k + 1) - (k + 1) + (1/2)log(2Pi) +              *
00085  *          StirlingCorrection(k + 1)                                    *
00086  *                                                                       *
00087  * log k! = (k + 1/2)log(k)     -  k      + (1/2)log(2Pi) +              *
00088  *          StirlingCorrection(k)                                        *
00089  *                                                                       *
00090  *************************************************************************/
00091 
00092 static double StirlingCorrection(long int k)
00093 {
00094   #define   C1               8.33333333333333333e-02     //  +1/12 
00095   #define   C3              -2.77777777777777778e-03     //  -1/360
00096   #define   C5               7.93650793650793651e-04     //  +1/1260
00097   #define   C7              -5.95238095238095238e-04     //  -1/1680
00098 
00099   static double  c[31] = {   0.0,
00100                              8.106146679532726e-02, 4.134069595540929e-02,
00101                              2.767792568499834e-02, 2.079067210376509e-02,
00102                              1.664469118982119e-02, 1.387612882307075e-02,
00103                              1.189670994589177e-02, 1.041126526197209e-02,
00104                              9.255462182712733e-03, 8.330563433362871e-03,
00105                              7.573675487951841e-03, 6.942840107209530e-03,
00106                              6.408994188004207e-03, 5.951370112758848e-03,
00107                              5.554733551962801e-03, 5.207655919609640e-03,
00108                              4.901395948434738e-03, 4.629153749334029e-03,
00109                              4.385560249232324e-03, 4.166319691996922e-03,
00110                              3.967954218640860e-03, 3.787618068444430e-03,
00111                              3.622960224683090e-03, 3.472021382978770e-03,
00112                              3.333155636728090e-03, 3.204970228055040e-03,
00113                              3.086278682608780e-03, 2.976063983550410e-03,
00114                              2.873449362352470e-03, 2.777674929752690e-03,
00115   };
00116   double    r, rr;
00117 
00118   if (k > 30L) {
00119     r = 1.0 / (double) k;  rr = r * r;
00120     return(r*(C1 + rr*(C3 + rr*(C5 + rr*C7))));
00121         }
00122         else  return(c[k]);
00123 }
00124 
00125 double RandBinomial::genBinomial( HepRandomEngine *anEngine, long n, double p )
00126 {
00127 /******************************************************************
00128  *                                                                *
00129  *     Binomial-Distribution - Acceptance Rejection/Inversion     *
00130  *                                                                *
00131  ******************************************************************
00132  *                                                                *
00133  * Acceptance Rejection method combined with Inversion for        *
00134  * generating Binomial random numbers with parameters             *
00135  * n (number of trials) and p (probability of success).           *
00136  * For  min(n*p,n*(1-p)) < 10  the Inversion method is applied:   *
00137  * The random numbers are generated via sequential search,        *
00138  * starting at the lowest index k=0. The cumulative probabilities *
00139  * are avoided by using the technique of chop-down.               *
00140  * For  min(n*p,n*(1-p)) >= 10  Acceptance Rejection is used:     *
00141  * The algorithm is based on a hat-function which is uniform in   *
00142  * the centre region and exponential in the tails.                *
00143  * A triangular immediate acceptance region in the centre speeds  *
00144  * up the generation of binomial variates.                        *
00145  * If candidate k is near the mode, f(k) is computed recursively  *
00146  * starting at the mode m.                                        *
00147  * The acceptance test by Stirling's formula is modified          *
00148  * according to W. Hoermann (1992): The generation of binomial    *
00149  * random variates, to appear in J. Statist. Comput. Simul.       *
00150  * If  p < .5  the algorithm is applied to parameters n, p.       *
00151  * Otherwise p is replaced by 1-p, and k is replaced by n - k.    *
00152  *                                                                *
00153  ******************************************************************
00154  *                                                                *
00155  * FUNCTION:    - btpec samples a random number from the binomial *
00156  *                distribution with parameters n and p  and is    *
00157  *                valid for  n*min(p,1-p)  >  0.                  *
00158  * REFERENCE:   - V. Kachitvichyanukul, B.W. Schmeiser (1988):    *
00159  *                Binomial random variate generation,             *
00160  *                Communications of the ACM 31, 216-222.          *
00161  * SUBPROGRAMS: - StirlingCorrection()                            *
00162  *                            ... Correction term of the Stirling *
00163  *                                approximation for log(k!)       *
00164  *                                (series in 1/k or table values  *
00165  *                                for small k) with long int k    *
00166  *              - anEngine    ... Pointer to a (0,1)-Uniform      * 
00167  *                                engine                          *
00168  *                                                                *
00169  * Implemented by H. Zechner and P. Busswald, September 1992      *
00170  ******************************************************************/
00171 
00172 #define C1_3     0.33333333333333333
00173 #define C5_8     0.62500000000000000
00174 #define C1_6     0.16666666666666667
00175 #define DMAX_KM  20L
00176 
00177   static long int      n_last = -1L,  n_prev = -1L;
00178   static double        par,np,p0,q,p_last = -1.0, p_prev = -1.0;
00179   static long          b,m,nm;
00180   static double        pq, rc, ss, xm, xl, xr, ll, lr, c,
00181                                  p1, p2, p3, p4, ch;
00182 
00183   long                 bh,i, K, Km, nK;
00184   double               f, rm, U, V, X, T, E;
00185 
00186   if (n != n_last || p != p_last)                 // set-up 
00187         {
00188          n_last = n;
00189          p_last = p;
00190          par=std::min(p,1.0-p);
00191          q=1.0-par;
00192          np = n*par;
00193 
00194 // Check for invalid input values
00195 
00196          if( np <= 0.0 ) return (-1.0);
00197 
00198          rm = np + par;
00199          m  = (long int) rm;                      // mode, integer 
00200          if (np<10)
00201         {
00202          p0=std::exp(n*std::log(q));              // Chop-down
00203          bh=(long int)(np+10.0*std::sqrt(np*q));
00204          b=std::min(n,bh);
00205         }
00206          else
00207                  {
00208         rc = (n + 1.0) * (pq = par / q);          // recurr. relat.
00209         ss = np * q;                              // variance  
00210         i  = (long int) (2.195*std::sqrt(ss) - 4.6*q); // i = p1 - 0.5
00211         xm = m + 0.5;
00212         xl = (double) (m - i);                    // limit left 
00213         xr = (double) (m + i + 1L);               // limit right
00214         f  = (rm - xl) / (rm - xl*par);  ll = f * (1.0 + 0.5*f);
00215         f  = (xr - rm) / (xr * q);     lr = f * (1.0 + 0.5*f);
00216         c  = 0.134 + 20.5/(15.3 + (double) m);    // parallelogram
00217                                                   // height
00218         p1 = i + 0.5;
00219         p2 = p1 * (1.0 + c + c);                  // probabilities
00220         p3 = p2 + c/ll;                           // of regions 1-4
00221         p4 = p3 + c/lr;
00222                  }
00223   }
00224   if (np<10)                                      //Inversion Chop-down
00225          {
00226           double pk;
00227 
00228           K=0;
00229           pk=p0;
00230           U=anEngine->flat();
00231           while (U>pk)
00232                 {
00233                  ++K;
00234                  if (K>b)
00235                          {
00236                 U=anEngine->flat();
00237                 K=0;
00238                 pk=p0;
00239                          }
00240                  else
00241                          {
00242                 U-=pk;
00243                 pk=(double)(((n-K+1)*par*pk)/(K*q));
00244                          }
00245                 }
00246           return ((p>0.5) ? (double)(n-K):(double)K);
00247          }
00248 
00249   for (;;)
00250         {
00251          V = anEngine->flat();
00252          if ((U = anEngine->flat() * p4) <= p1)  // triangular region
00253                 {
00254                  K=(long int) (xm - U + p1*V);
00255         return ((p>0.5) ? (double)(n-K):(double)K);  // immediate accept
00256                 }
00257          if (U <= p2)                                // parallelogram
00258                 {
00259                  X = xl + (U - p1)/c;
00260                  if ((V = V*c + 1.0 - std::fabs(xm - X)/p1) >= 1.0)  continue;
00261                  K = (long int) X;
00262                 }
00263          else if (U <= p3)                           // left tail
00264                 {
00265                  if ((X = xl + std::log(V)/ll) < 0.0)  continue;
00266                  K = (long int) X;
00267                  V *= (U - p2) * ll;
00268                 }
00269          else                                         // right tail
00270                 {
00271                  if ((K = (long int) (xr - std::log(V)/lr)) > n)  continue;
00272                  V *= (U - p3) * lr;
00273                 }
00274 
00275  // acceptance test :  two cases, depending on |K - m|
00276          if ((Km = std::labs(K - m)) <= DMAX_KM || Km + Km + 2L >= ss)
00277           {
00278 
00279  // computation of p(K) via recurrence relationship from the mode
00280                 f = 1.0;                              // f(m)
00281                 if (m < K)
00282          {
00283           for (i = m; i < K; )
00284                 {
00285                 if ((f *= (rc / ++i - pq)) < V)  break;  // multiply  f
00286                 }
00287          }
00288                 else
00289          {
00290           for (i = K; i < m; )
00291                  {
00292                   if ((V *= (rc / ++i - pq)) > f)  break; // multiply  V
00293                  }
00294          }
00295                 if (V <= f)  break;                       // acceptance test
00296          }
00297   else
00298          {
00299 
00300  // lower and upper squeeze tests, based on lower bounds for log p(K)
00301                 V = std::log(V);
00302                 T = - Km * Km / (ss + ss);
00303                 E =  (Km / ss) * ((Km * (Km * C1_3 + C5_8) + C1_6) / ss + 0.5);
00304                 if (V <= T - E)  break;
00305                 if (V <= T + E)
00306                  {
00307         if (n != n_prev || par != p_prev)
00308          {
00309           n_prev = n;
00310           p_prev = par;
00311 
00312           nm = n - m + 1L;
00313           ch = xm * std::log((m + 1.0)/(pq * nm)) +
00314                StirlingCorrection(m + 1L) + StirlingCorrection(nm);
00315          }
00316         nK = n - K + 1L;
00317 
00318  // computation of log f(K) via Stirling's formula
00319  // final acceptance-rejection test
00320         if (V <= ch + (n + 1.0)*std::log((double) nm / (double) nK) +
00321                  (K + 0.5)*std::log(nK * pq / (K + 1.0)) -
00322                  StirlingCorrection(K + 1L) - StirlingCorrection(nK))  break;
00323                 }
00324          }
00325   }
00326   return ((p>0.5) ? (double)(n-K):(double)K);
00327 }
00328 
00329 std::ostream & RandBinomial::put ( std::ostream & os ) const {
00330   int pr=os.precision(20);
00331   std::vector<unsigned long> t(2);
00332   os << " " << name() << "\n";
00333   os << "Uvec" << "\n";
00334   t = DoubConv::dto2longs(defaultP);
00335   os << defaultN << " " << defaultP << " " << t[0] << " " << t[1] << "\n";
00336   os.precision(pr);
00337   return os;
00338 }
00339 
00340 std::istream & RandBinomial::get ( std::istream & is ) {
00341   std::string inName;
00342   is >> inName;
00343   if (inName != name()) {
00344     is.clear(std::ios::badbit | is.rdstate());
00345     std::cerr << "Mismatch when expecting to read state of a "
00346               << name() << " distribution\n"
00347               << "Name found was " << inName
00348               << "\nistream is left in the badbit state\n";
00349     return is;
00350   }
00351   if (possibleKeywordInput(is, "Uvec", defaultN)) {
00352     std::vector<unsigned long> t(2);
00353     is >> defaultN >> defaultP;
00354     is >> t[0] >> t[1]; defaultP = DoubConv::longs2double(t); 
00355     return is;
00356   }
00357   // is >> defaultN encompassed by possibleKeywordInput
00358   is >> defaultP;
00359   return is;
00360 }
00361 
00362 
00363 }  // namespace CLHEP

Generated on Mon May 27 17:50:33 2013 for Geant4 by  doxygen 1.4.7