00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057 #include "G4hParametrisedLossModel.hh"
00058
00059 #include "globals.hh"
00060 #include "G4PhysicalConstants.hh"
00061 #include "G4SystemOfUnits.hh"
00062 #include "G4UnitsTable.hh"
00063 #include "G4hZiegler1977p.hh"
00064 #include "G4hZiegler1977He.hh"
00065 #include "G4hZiegler1985p.hh"
00066 #include "G4hSRIM2000p.hh"
00067 #include "G4hICRU49p.hh"
00068 #include "G4hICRU49He.hh"
00069 #include "G4DynamicParticle.hh"
00070 #include "G4ParticleDefinition.hh"
00071 #include "G4ElementVector.hh"
00072 #include "G4Material.hh"
00073
00074
00075
00076 G4hParametrisedLossModel::G4hParametrisedLossModel(const G4String& name)
00077 :G4VLowEnergyModel(name), modelName(name)
00078 {
00079 InitializeMe();
00080 }
00081
00082
00083
00084 void G4hParametrisedLossModel::InitializeMe()
00085 {
00086 expStopPower125 = 0.;
00087
00088 theZieglerFactor = eV*cm2*1.0e-15 ;
00089
00090
00091 G4String blank = G4String(" ") ;
00092 G4String zi77p = G4String("Ziegler1977p") ;
00093 G4String zi77He = G4String("Ziegler1977He") ;
00094 G4String ir49p = G4String("ICRU_R49p") ;
00095 G4String ir49He = G4String("ICRU_R49He") ;
00096 G4String zi85p = G4String("Ziegler1985p") ;
00097 G4String zi00p = G4String("SRIM2000p") ;
00098 G4String qao = G4String("QAO") ;
00099 if(zi77p == modelName) {
00100 eStopingPowerTable = new G4hZiegler1977p();
00101 highEnergyLimit = 100.0*MeV;
00102 lowEnergyLimit = 1.0*keV;
00103
00104 } else if(zi77He == modelName) {
00105 eStopingPowerTable = new G4hZiegler1977He();
00106 highEnergyLimit = 10.0*MeV/4.0;
00107 lowEnergyLimit = 1.0*keV/4.0;
00108
00109 } else if(zi85p == modelName) {
00110 eStopingPowerTable = new G4hZiegler1985p();
00111 highEnergyLimit = 100.0*MeV;
00112 lowEnergyLimit = 1.0*keV;
00113
00114 } else if(zi00p == modelName ) {
00115 eStopingPowerTable = new G4hSRIM2000p();
00116 highEnergyLimit = 100.0*MeV;
00117 lowEnergyLimit = 1.0*keV;
00118
00119 } else if(ir49p == modelName || blank == modelName) {
00120 eStopingPowerTable = new G4hICRU49p();
00121 highEnergyLimit = 2.0*MeV;
00122 lowEnergyLimit = 1.0*keV;
00123
00124 } else if(ir49He == modelName) {
00125 eStopingPowerTable = new G4hICRU49He();
00126 highEnergyLimit = 10.0*MeV/4.0;
00127 lowEnergyLimit = 1.0*keV/4.0;
00128
00129
00130
00131
00132
00133
00134 } else {
00135 eStopingPowerTable = new G4hICRU49p();
00136 highEnergyLimit = 2.0*MeV;
00137 lowEnergyLimit = 1.0*keV;
00138 G4cout << "G4hParametrisedLossModel Warning: <" << modelName
00139 << "> is unknown - default <"
00140 << ir49p << ">" << " is used for Electronic Stopping"
00141 << G4endl;
00142 modelName = ir49p;
00143 }
00144
00145
00146
00147
00148
00149 }
00150
00151
00152
00153 G4hParametrisedLossModel::~G4hParametrisedLossModel()
00154 {
00155 delete eStopingPowerTable;
00156 }
00157
00158
00159
00160 G4double G4hParametrisedLossModel::TheValue(const G4DynamicParticle* particle,
00161 const G4Material* material)
00162 {
00163 G4double scaledEnergy = (particle->GetKineticEnergy())
00164 * proton_mass_c2/(particle->GetMass());
00165 G4double factor = theZieglerFactor;
00166 if (scaledEnergy < lowEnergyLimit) {
00167 if (modelName != "QAO") factor *= std::sqrt(scaledEnergy/lowEnergyLimit);
00168 scaledEnergy = lowEnergyLimit;
00169 }
00170 G4double eloss = StoppingPower(material,scaledEnergy) * factor;
00171
00172 return eloss;
00173 }
00174
00175
00176
00177 G4double G4hParametrisedLossModel::TheValue(const G4ParticleDefinition* aParticle,
00178 const G4Material* material,
00179 G4double kineticEnergy)
00180 {
00181 G4double scaledEnergy = kineticEnergy
00182 * proton_mass_c2/(aParticle->GetPDGMass());
00183
00184 G4double factor = theZieglerFactor;
00185 if (scaledEnergy < lowEnergyLimit) {
00186 if (modelName != "QAO") factor *= std::sqrt(scaledEnergy/lowEnergyLimit);
00187 scaledEnergy = lowEnergyLimit;
00188 }
00189 G4double eloss = StoppingPower(material,scaledEnergy) * factor;
00190
00191 return eloss;
00192 }
00193
00194
00195
00196 G4double G4hParametrisedLossModel::LowEnergyLimit(const G4ParticleDefinition* ,
00197 const G4Material*) const
00198 {
00199 return lowEnergyLimit;
00200 }
00201
00202
00203
00204 G4double G4hParametrisedLossModel::HighEnergyLimit(const G4ParticleDefinition* ,
00205 const G4Material*) const
00206 {
00207 return highEnergyLimit;
00208 }
00209
00210
00211 G4double G4hParametrisedLossModel::LowEnergyLimit(const G4ParticleDefinition* ) const
00212 {
00213 return lowEnergyLimit;
00214 }
00215
00216
00217
00218 G4double G4hParametrisedLossModel::HighEnergyLimit(const G4ParticleDefinition* ) const
00219 {
00220 return highEnergyLimit;
00221 }
00222
00223
00224
00225 G4bool G4hParametrisedLossModel::IsInCharge(const G4DynamicParticle* ,
00226 const G4Material*) const
00227 {
00228 return true;
00229 }
00230
00231
00232
00233 G4bool G4hParametrisedLossModel::IsInCharge(const G4ParticleDefinition* ,
00234 const G4Material*) const
00235 {
00236 return true;
00237 }
00238
00239
00240
00241 G4double G4hParametrisedLossModel::StoppingPower(const G4Material* material,
00242 G4double kineticEnergy)
00243 {
00244 G4double eloss = 0.0;
00245
00246 const G4int numberOfElements = material->GetNumberOfElements() ;
00247 const G4double* theAtomicNumDensityVector =
00248 material->GetAtomicNumDensityVector() ;
00249
00250
00251
00252 if( (eStopingPowerTable->HasMaterial(material)) ) {
00253
00254 eloss = eStopingPowerTable->StoppingPower(material, kineticEnergy);
00255 if ("QAO" != modelName) {
00256 eloss *= material->GetTotNbOfAtomsPerVolume();
00257 if(1 < numberOfElements) {
00258 G4int nAtoms = 0;
00259
00260 const G4int* theAtomsVector = material->GetAtomsVector();
00261 for (G4int iel=0; iel<numberOfElements; iel++) {
00262 nAtoms += theAtomsVector[iel];
00263 }
00264 eloss /= nAtoms;
00265 }
00266 }
00267
00268
00269 } else if(1 == numberOfElements) {
00270
00271 G4double z = material->GetZ();
00272 eloss = (eStopingPowerTable->ElectronicStoppingPower(z, kineticEnergy))
00273 * (material->GetTotNbOfAtomsPerVolume()) ;
00274
00275
00276 } else if( MolecIsInZiegler1988(material)) {
00277
00278
00279 G4double eloss125 = 0.0 ;
00280 const G4ElementVector* theElementVector =
00281 material->GetElementVector() ;
00282
00283
00284
00285 for (G4int i=0; i<numberOfElements; i++) {
00286 const G4Element* element = (*theElementVector)[i] ;
00287 G4double z = element->GetZ() ;
00288 eloss +=(eStopingPowerTable->ElectronicStoppingPower(z,kineticEnergy))
00289 * theAtomicNumDensityVector[i] ;
00290 eloss125 +=(eStopingPowerTable->ElectronicStoppingPower(z,125.0*keV))
00291 * theAtomicNumDensityVector[i] ;
00292 }
00293
00294
00295 eloss *= ChemicalFactor(kineticEnergy, eloss125) ;
00296
00297
00298 } else {
00299 const G4ElementVector* theElementVector =
00300 material->GetElementVector() ;
00301
00302
00303 for (G4int i=0; i<numberOfElements; i++)
00304 {
00305 const G4Element* element = (*theElementVector)[i] ;
00306 G4double z = element->GetZ() ;
00307 eloss += (eStopingPowerTable->ElectronicStoppingPower(z,kineticEnergy))
00308 * theAtomicNumDensityVector[i];
00309 }
00310 }
00311 return eloss;
00312 }
00313
00314
00315
00316 G4bool G4hParametrisedLossModel::MolecIsInZiegler1988(
00317 const G4Material* material)
00318 {
00319
00320
00321
00322
00323 G4String myFormula = G4String(" ") ;
00324 const G4String chFormula = material->GetChemicalFormula() ;
00325 if (myFormula == chFormula ) return false ;
00326
00327
00328
00329
00330
00331
00332
00333 myFormula = G4String("H_2O") ;
00334 const G4State theState = material->GetState() ;
00335 if( theState == kStateGas && myFormula == chFormula) return false ;
00336
00337 const size_t numberOfMolecula = 53 ;
00338
00339
00340 const G4double HeEff = 2.8735 ;
00341
00342 static G4String name[numberOfMolecula] = {
00343 "H_2O", "C_2H_4O", "C_3H_6O", "C_2H_2", "C_H_3OH",
00344 "C_2H_5OH", "C_3H_7OH", "C_3H_4", "NH_3", "C_14H_10",
00345 "C_6H_6", "C_4H_10", "C_4H_6", "C_4H_8O", "CCl_4",
00346 "CF_4", "C_6H_8", "C_6H_12", "C_6H_10O", "C_6H_10",
00347 "C_8H_16", "C_5H_10", "C_5H_8", "C_3H_6-Cyclopropane","C_2H_4F_2",
00348 "C_2H_2F_2", "C_4H_8O_2", "C_2H_6", "C_2F_6", "C_2H_6O",
00349 "C_3H_6O", "C_4H_10O", "C_2H_4", "C_2H_4O", "C_2H_4S",
00350 "SH_2", "CH_4", "CCLF_3", "CCl_2F_2", "CHCl_2F",
00351 "(CH_3)_2S", "N_2O", "C_5H_10O", "C_8H_6", "(CH_2)_N",
00352 "(C_3H_6)_N","(C_8H_8)_N", "C_3H_8", "C_3H_6-Propylene", "C_3H_6O",
00353 "C_3H_6S", "C_4H_4S", "C_7H_8"
00354 } ;
00355
00356 static G4double expStopping[numberOfMolecula] = {
00357 66.1, 190.4, 258.7, 42.2, 141.5,
00358 210.9, 279.6, 198.8, 31.0, 267.5,
00359 122.8, 311.4, 260.3, 328.9, 391.3,
00360 206.6, 374.0, 422.0, 432.0, 398.0,
00361 554.0, 353.0, 326.0, 74.6, 220.5,
00362 197.4, 362.0, 170.0, 330.5, 211.3,
00363 262.3, 349.6, 51.3, 187.0, 236.9,
00364 121.9, 35.8, 247.0, 292.6, 268.0,
00365 262.3, 49.0, 398.9, 444.0, 22.91,
00366 68.0, 155.0, 84.0, 74.2, 254.7,
00367 306.8, 324.4, 420.0
00368 } ;
00369
00370 static G4double expCharge[numberOfMolecula] = {
00371 HeEff, HeEff, HeEff, 1.0, HeEff,
00372 HeEff, HeEff, HeEff, 1.0, 1.0,
00373 1.0, HeEff, HeEff, HeEff, HeEff,
00374 HeEff, HeEff, HeEff, HeEff, HeEff,
00375 HeEff, HeEff, HeEff, 1.0, HeEff,
00376 HeEff, HeEff, HeEff, HeEff, HeEff,
00377 HeEff, HeEff, 1.0, HeEff, HeEff,
00378 HeEff, 1.0, HeEff, HeEff, HeEff,
00379 HeEff, 1.0, HeEff, HeEff, 1.0,
00380 1.0, 1.0, 1.0, 1.0, HeEff,
00381 HeEff, HeEff, HeEff
00382 } ;
00383
00384 static G4double numberOfAtomsPerMolecula[numberOfMolecula] = {
00385 3.0, 7.0, 10.0, 4.0, 6.0,
00386 9.0, 12.0, 7.0, 4.0, 24.0,
00387 12.0, 14.0, 10.0, 13.0, 5.0,
00388 5.0, 14.0, 18.0, 17.0, 17.0,
00389 24.0, 15.0, 13.0, 9.0, 8.0,
00390 6.0, 14.0, 8.0, 8.0, 9.0,
00391 10.0, 15.0, 6.0, 7.0, 7.0,
00392 3.0, 5.0, 5.0, 5.0, 5.0,
00393 9.0, 3.0, 16.0, 14.0, 3.0,
00394 9.0, 16.0, 11.0, 9.0, 10.0,
00395 10.0, 9.0, 15.0
00396 } ;
00397
00398
00399 for (size_t i=0; i<numberOfMolecula; i++)
00400 {
00401 if(chFormula == name[i]) {
00402 G4double exp125 = expStopping[i] *
00403 (material->GetTotNbOfAtomsPerVolume()) /
00404 (expCharge[i] * numberOfAtomsPerMolecula[i]) ;
00405 SetExpStopPower125(exp125) ;
00406 return true ;
00407 }
00408 }
00409
00410 return false ;
00411 }
00412
00413
00414
00415 G4double G4hParametrisedLossModel::ChemicalFactor(
00416 G4double kineticEnergy, G4double eloss125) const
00417 {
00418
00419
00420
00421
00422 G4double gamma = 1.0 + kineticEnergy/proton_mass_c2 ;
00423 G4double gamma25 = 1.0 + 25.0*keV /proton_mass_c2 ;
00424 G4double gamma125 = 1.0 + 125.0*keV/proton_mass_c2 ;
00425 G4double beta = std::sqrt(1.0 - 1.0/(gamma*gamma)) ;
00426 G4double beta25 = std::sqrt(1.0 - 1.0/(gamma25*gamma25)) ;
00427 G4double beta125 = std::sqrt(1.0 - 1.0/(gamma125*gamma125)) ;
00428
00429 G4double factor = 1.0 + (expStopPower125/eloss125 - 1.0) *
00430 (1.0 + std::exp( 1.48 * ( beta125/beta25 - 7.0 ) ) ) /
00431 (1.0 + std::exp( 1.48 * ( beta/beta25 - 7.0 ) ) ) ;
00432
00433 return factor ;
00434 }
00435
00436