G4XAnnihilationChannel.cc

Go to the documentation of this file.
00001 //
00002 // ********************************************************************
00003 // * License and Disclaimer                                           *
00004 // *                                                                  *
00005 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
00006 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
00007 // * conditions of the Geant4 Software License,  included in the file *
00008 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
00009 // * include a list of copyright holders.                             *
00010 // *                                                                  *
00011 // * Neither the authors of this software system, nor their employing *
00012 // * institutes,nor the agencies providing financial support for this *
00013 // * work  make  any representation or  warranty, express or implied, *
00014 // * regarding  this  software system or assume any liability for its *
00015 // * use.  Please see the license in the file  LICENSE  and URL above *
00016 // * for the full disclaimer and the limitation of liability.         *
00017 // *                                                                  *
00018 // * This  code  implementation is the result of  the  scientific and *
00019 // * technical work of the GEANT4 collaboration.                      *
00020 // * By using,  copying,  modifying or  distributing the software (or *
00021 // * any work based  on the software)  you  agree  to acknowledge its *
00022 // * use  in  resulting  scientific  publications,  and indicate your *
00023 // * acceptance of all terms of the Geant4 Software license.          *
00024 // ********************************************************************
00025 //
00026 #include "globals.hh"
00027 #include "G4ios.hh"
00028 #include "G4PhysicalConstants.hh"
00029 #include "G4XAnnihilationChannel.hh"
00030 #include "G4KineticTrack.hh"
00031 #include "G4ParticleDefinition.hh"
00032 #include "G4ResonanceWidth.hh"
00033 #include "G4ResonancePartialWidth.hh"
00034 #include "G4PhysicsVector.hh"
00035 #include "G4PartialWidthTable.hh"
00036 
00037 G4XAnnihilationChannel::G4XAnnihilationChannel(): resonance(0)
00038 {
00039         // As a first approximation the model is assumed to be valid over
00040           // the entire energy range
00041           lowLimit = 0.;
00042           highLimit = DBL_MAX;
00043           widthTable = 0;
00044           partWidthTable = 0;
00045 }
00046 
00047 G4XAnnihilationChannel::G4XAnnihilationChannel(const G4ParticleDefinition* resDefinition,
00048                                                const G4ResonanceWidth& resWidths,
00049                                                const G4ResonancePartialWidth& resPartWidths,
00050                                                const G4String& partWidthLabel) 
00051   : resonance(resDefinition)
00052 { 
00053   // Get the tabulated mass-dependent widths for the resonance
00054   G4String resName = resonance->GetParticleName();
00055   // cout << "HPW "<<resName<<endl;
00056   G4String shortName = theNames.ShortName(resName);
00057   // cout << "HPW "<<shortName<<endl;
00058   // cout << "HPW "<<partWidthLabel<<endl;
00059 
00060   widthTable = resWidths.MassDependentWidth(shortName);
00061   partWidthTable = resPartWidths.MassDependentWidth(partWidthLabel);
00062 
00063   // As a first approximation the model is assumed to be valid over 
00064   // the entire energy range
00065   lowLimit = 0.;
00066   highLimit = DBL_MAX;
00067 }
00068 
00069 
00070 G4XAnnihilationChannel::~G4XAnnihilationChannel()
00071 {
00072   if (widthTable) delete widthTable;
00073   widthTable = 0;
00074   if (partWidthTable) delete partWidthTable;
00075   partWidthTable = 0;
00076  }
00077 
00078 
00079 G4bool G4XAnnihilationChannel::operator==(const G4XAnnihilationChannel &right) const
00080 {
00081   return (this == (G4XAnnihilationChannel *) &right);
00082 }
00083 
00084 
00085 G4bool G4XAnnihilationChannel::operator!=(const G4XAnnihilationChannel &right) const
00086 {
00087   return (this != (G4XAnnihilationChannel *) &right);
00088 }
00089 
00090 
00091 G4double G4XAnnihilationChannel::CrossSection(const G4KineticTrack& trk1, 
00092                                               const G4KineticTrack& trk2) const
00093 {
00094   G4double sigma = 0.;
00095   G4double eCM = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
00096 
00097   G4ParticleDefinition* def1 = trk1.GetDefinition();
00098   G4ParticleDefinition* def2 = trk2.GetDefinition();
00099 
00100   G4int J1 = def1->GetPDGiSpin();
00101   G4int J2 = def2->GetPDGiSpin();
00102   G4double m_1 = def1->GetPDGMass();
00103   G4double m_2 = def2->GetPDGMass();
00104 
00105   G4int JRes = resonance->GetPDGiSpin();
00106   G4double mRes = resonance->GetPDGMass();
00107 
00108   G4double branch = Branch(trk1,trk2);
00109   G4double width = VariableWidth(trk1,trk2);
00110   G4double cleb = NormalizedClebsch(trk1,trk2);
00111 
00112   G4double S = eCM * eCM;
00113   if (S == 0.) throw G4HadronicException(__FILE__, __LINE__, "G4XAnnihilationChannel::CrossSection - eCM = 0");
00114 
00115   G4double pCM = std::sqrt((S-(m_1+m_2)*(m_1+m_2))*(S-(m_1-m_2)*(m_1-m_2))/(4.*S));
00116 
00117   sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1) ) 
00118             * pi / (pCM * pCM) * branch * width * width / 
00119             ( (eCM - mRes) * (eCM - mRes) + width * width / 4.0) * cleb * hbarc_squared);
00120 
00121 //   G4cout << "SS " << branch<<" "<<sigma<<" "
00122 //          << J1 <<" "
00123 //       <<J2<<" "
00124 //       <<m1<<" "
00125 //       <<m2<<" "
00126 //       <<JRes<<" "
00127 //       <<mRes<<" "
00128 //       <<wRes<<" "
00129 //       <<width<<" "
00130 //       <<cleb<<" "
00131 //       <<G4endl;
00132   return sigma;
00133 }
00134 
00135 
00136 G4String G4XAnnihilationChannel::Name() const
00137 {
00138   G4String name("XAnnihilationChannelCrossSection");
00139   return name;
00140 }
00141 
00142 
00143 
00144 G4bool G4XAnnihilationChannel::IsValid(G4double e) const
00145 {
00146   G4bool answer = InLimits(e,lowLimit,highLimit);
00147 
00148   return answer;
00149 }
00150 
00151 
00152 G4double G4XAnnihilationChannel::Branch(const G4KineticTrack& trk1, 
00153                                         const G4KineticTrack& trk2) const
00154 {
00155   G4double w=VariableWidth(trk1,trk2);
00156   if(w==0) return 0;
00157   return VariablePartialWidth(trk1,trk2) / VariableWidth(trk1,trk2);
00158 }
00159 
00160 G4double G4XAnnihilationChannel::VariableWidth(const G4KineticTrack& trk1, 
00161                                                const G4KineticTrack& trk2) const
00162 {
00163   // actual production width of resonance, depending on available energy.
00164 
00165   G4double width = resonance->GetPDGWidth();
00166   G4bool dummy = false;
00167   G4double sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
00168   if (widthTable != 0) 
00169     {
00170       width = widthTable->GetValue(sqrtS,dummy);
00171     }
00172   return width;
00173 }
00174 
00175 
00176 G4double G4XAnnihilationChannel::VariablePartialWidth(const G4KineticTrack& trk1, 
00177                                                       const G4KineticTrack& trk2) const
00178 {
00179   // Calculate mass dependent partial width of resonance, 
00180   // based on UrQMD tabulations
00181 
00182   G4double width(0);
00183 
00184   if (partWidthTable != 0)
00185   {
00186     G4double sqrtS = 0;
00187     G4bool dummy = false;
00188     sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
00189     width = partWidthTable->GetValue(sqrtS,dummy);
00190   }
00191   else
00192   {
00193     width = resonance->GetPDGWidth();
00194   }
00195   return width;
00196 }
00197 
00198 
00199 G4double G4XAnnihilationChannel::NormalizedClebsch(const G4KineticTrack& trk1, 
00200                                                    const G4KineticTrack& trk2) const
00201 {
00202   G4double cleb = 0.;
00203   G4ParticleDefinition* def1 = trk1.GetDefinition();
00204   G4ParticleDefinition* def2 = trk2.GetDefinition();
00205 
00206   G4int iso31 = def1->GetPDGiIsospin3();
00207   G4int iso32 = def2->GetPDGiIsospin3();
00208   G4int iso3 = iso31 + iso32;
00209   G4int iso1 = def1->GetPDGiIsospin();
00210   G4int iso2 = def2->GetPDGiIsospin();
00211 
00212   G4int isoRes = resonance->GetPDGiIsospin();
00213   
00214   if (isoRes < iso3) return 0.;
00215   if ((iso1*iso2) == 0) return 1.;
00216 
00217   cleb = clebsch.NormalizedClebschGordan(isoRes,iso3,iso1,iso2,iso31,iso32);
00218 
00219   // Special case: particle-antiparticle, charge-conjugated states have the same weight
00220   G4String type1 = def1->GetParticleType();
00221   G4String type2 = def2->GetParticleType();
00222   G4int anti = def1->GetPDGEncoding() * def2->GetPDGEncoding();
00223   G4int strangeness = resonance->GetQuarkContent(3) + resonance->GetAntiQuarkContent(3);
00224   if ( ((type1 == "baryon" && type2 == "baryon") ||(type1 == "meson" && type2 == "meson")) &&
00225        anti < 0 && strangeness == 0) 
00226     {
00227       if (def1->GetPDGEncoding() != -(def2->GetPDGEncoding())) cleb = 0.5 * cleb;
00228     }
00229        
00230   return cleb;
00231 }
00232 
00233 
00234 
00235 
00236 

Generated on Mon May 27 17:50:26 2013 for Geant4 by  doxygen 1.4.7